• Title/Summary/Keyword: Photocatalytic process

Search Result 234, Processing Time 0.026 seconds

Photocatalytic Property of Nano-Structured TiO$_2$ Thermal Splayed Coating - Part I: TiO$_2$ Coating - (나노구조 TiO$_2$ 용사코팅의 미세조직 제어 공정기술 개발과 광촉매 특성평가 - Part I: TiO$_2$코팅 -)

  • 이창훈;최한신;이창희;김형준;신동우
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.39-45
    • /
    • 2003
  • Nano-TiO$_2$ photocatalytic coatings were deposited on the stainless steel 304(50$\times$70$\times$3mm) by the APS(Atmospheric Plasma Spraying). Photocatlytic reaction was tested in MB(methylene blue) aqueous solution. For applying nano-TiO$_2$ powders by thermal spray, the starting nano-TiO$_2$ powder with 100% anatase crystalline was agglomerated by spray drying. Plasma second gas(H$_2$) flow rate and spraying distance were used as principal process parameters which are known to control heat enthalpy(heat input). The relationship between process parameters and the characteristics of microstructure such as the anatase phase fraction and grain size of the TiO$_2$ coatings were investigated. The photo-decomposition efficiency of TiO$_2$ coatings was evaluated by the kinetics of MB aqueous solution decomposition. It was found that the TiO$_2$ coating with a lower heat input condition had a higher anatase fraction, smaller anatase grain size and a better photo-decomposition efficiency.

Activated Carbon-Photocatalytic Hybrid System for the Treatment of the VOC in the Exhaust Gas from Painting Process (도장공정 배기가스 내 VOC 처리를 위한 활성탄-광촉매 복합시스템)

  • Lee, Chan;Cha, Sang-Won;Lee, Tae-Kyu
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.133-139
    • /
    • 2005
  • An activated carbon-photo catalysis hybrid system is proposed for the treatment of VOC produced from paint booth. and its VOC removal performance is experimentally evaluated. Activated carbon tower is designed on the basis of the adsorption characteristics of toluene. Photocatalytic system is designed as the series of $TiO_2/SiO\_2$ fluidized bed reactor and $TiO_2$-coated filters. The present activated carbon-photo catalysis hybrid system shows the VOC removal efficiency within $75\~100\%$ under different VOC species and concentrations.

Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants

  • Sudhaik, Anita;Raizada, Pankaj;Shandilya, Pooja;Jeong, Dae-Yong;Lim, Ji-Ho;Singh, Pardeep
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.28-51
    • /
    • 2018
  • Graphitic carbon nitride ($g-C_3N_4$) as a fascinating visible light active semiconductor photocatalyst has medium band gap, non-toxic nature, stable chemical structure and high thermal stability. Recently, intensive researches are focused on photocatalytic activity of $g-C_3N_4$ for wastewater treatment. This review demonstrates latest progress in fabrication of graphitic carbon nitride $C_3N_4$ incorporated nanocomposite to explore photocatalytic ability for water purification. The $g-C_3N_4$-based nanocomposites were categorized as $g-C_3N_4$ metal-free nanocomposite, noble metals/$g-C_3N_4$ heterojunction, non-metal doped $g-C_3N_4$, transition and post transition metal based $g-C_3N_4$ nanocomposite. Apart from fabrication methods, we emphasized on elaborating the mechanism of activity enhancement during photocatalytic process.

Photocatalytic Reaction of VOCs Using Titanium Oxide (산화티타늄을 이용한 VOCs의 광촉매 반응)

  • Jung, Soo-Kyung
    • Journal of Environmental Science International
    • /
    • v.17 no.2
    • /
    • pp.171-176
    • /
    • 2008
  • The VOCs have a direct influence on indoor air pollution, and stimulate respiratory organs and eyes in human body. Also, most of VOCs are a carcinogenic substances and causes to SBS (sickness building syndrome). Therefore, this study was progressed in photocatalysis of VOCs using UV/$TiO_2$ which was a benign process environmentally. The experiments were performed to know photodegradation characteristics as crystalline structure of $TiO_2$ which had anatase, rutile and P-25 (anatase : rutile = 70 : 30). The main purpose of this study was to identify photocatalytic characteristics as inlet concentration of reactants, $H_2O$, and residence time.

Fundamental Study on the Photocatalytic Degradation of Organics in Industrial Waste Water with the Presence of Titanium Dioxide

  • Kusaka, Eishi;Izawa, Mihiro;Fukunaka, Yasuhiro;Ishii, Ryuji
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.286-291
    • /
    • 2001
  • As part of fundamental studies on the degradation of the organic compounds in industrial waste water, the photocatalytic degradation properties of the organic compound by means of the UV/TiO$_2$degradation process have been investigated. The test organic compound of acetic acid was chosen in this study. The testing of photo catalytic degradation were performed under various operation conditions such as TiO$_2$dosages, initial concentration of the organic, the aqueous pH's, etc. The effects of various parameters on the short time activity of the present acetic acid-UV/TiO$_2$system could be demonstrated from this investigation.

  • PDF

Physical properties of mungbean starch/PVA bionanocomposites added nano-ZnS particles and its photocatalytic activity

  • Yun, Yeon-Hum;Kim, Eun-Sik;Shim, Wang-Geun;Yoon, Soon-Do
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.57-68
    • /
    • 2018
  • The main objective of this study is to prepare the bionanocomposite films using mungbean starch (MBS), PVA, ZnS, and plasticizers, and to evaluate the physical properties, thermal stability, and photocatalytic activity. The bionanocomposite films were cross-linked by heat-curing process. The ZnS and bionanocomposite films were characterized by FT-IR, XRD, and SEM. The results indicated that the mechanical properties and water resistance enhanced up to 1.2-1.5 times by the addition of nano-ZnS particles, and the thermal stability was improved by the addition of nano-ZnS particles. The photocatalytic activity of the bionanocomposite films added nano-ZnS particles was examined using bisphenol A (BPA) and methyl orange (MO). In addition, the photodegradation efficiency of BPA and MO was evaluated using the pseudo-first order kinetic model (PFOK).

Study of Degradation of Organic matter using prepared Titania by Metal ions substitution process (금속이온 치환법으로 제조된 티타니아를 이용한 유기물 분해에 대한 연구)

  • Lee, Gyu-Hwan;Rhee, Dong Seok
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.19-22
    • /
    • 2008
  • In recent years, much attention has been paid to "Photocatalytic oxidation" as an alternative technique, where the pollutants are degraded by UV-irradiation in the presence of a semiconductor suspension such as titanium dioxide. $TiO_2$ is the most often used photocatalyst due to its considerable photocatalytic activity, high stability, non-environmental impact and low cost. 1n this research, the photocatalytic degradation of humic acid, acetaldehyde and methylene blue in $UV/TiO_2$ systems has been stydied. The effect of calcination temperature for manufacturing of $TiO_2$ photocatalysts and type of photocatalysts on photodegradation has been investigated. Photocatalysts with various metal ions(Mn, Fe, Cu and Pt) loading are tested to evaluate the effects of metal ions impurities on photodegradation. The photodegradation efficiency with $Pt-TiO_2$ or $Fe-TiO_2$ or $Cu-TiO_2$ is higher than Degussa P-25 powder. However, the photodegradation efficiency with $Mn-TiO_2$ is lower than Degussa P-25 powder. The photocatalytic properties of the nanocrystals were strongly dependent upon the crystallinity, particle size, standard reduction potential of various transition metal and electronegativity of various transition metal. As a result photocatalysts with various metal ion loading evaluated the effect of photodegradation.

  • PDF

Photocatalytic activity enhancement of TiO2 with adding Zn particles

  • Seo, Hyeon Jin;Boo, Jang Heon;Jang, Hyun Woo;Kim, Mi Jeong;Boo, Jin-Hyo
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.162-165
    • /
    • 2016
  • APhotocatalysis process uses ambient oxygen from air and irradiation, fundamentally UV light, to generate oxidation and reduction which can degrade almost all harmful organic and inorganic compounds to nontoxic substances. This study was focused on enhancement of photocatalytic activity which improves the photocatlytic efficiency with $TiO_2$ particle by mixing of certain amounts of Zn particles. We analyzed degradation of organic pollutant materials such as toluene and phenol with the mixed photocatalysis by using UV-visible spectrophotometer and obtained a result that photocatalytic activity is increased with increasing amount of Zn particle. Especially, in the case of $TiO_2$ (1 mmol) and Zn (0.1 mmol) mixture photocatalyst, we obtained at least 2 times higher photocatalytic activity compared with the commercially available $TiO_2$ photocatalyst (Degussa P-25), indicating that our mixed photocatalyts (Zn-doped $TiO_2$) is very effective of removing both organic dye and pollutants and the conversion rate of toluene is much faster than that of phenol.

Degradation of VOC by Photocatalysts and Dark Discharge Hybrid Systems (광촉매와 암방전(dark discharge) 복합 시스템을 이용한 VOC의 분해)

  • Jung, Jihoon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.852-857
    • /
    • 2008
  • The immobilization technique is important to extend the application field of a photocatalyst. Titanium surface was changed into a $TiO_2$ thin film by the anodizing process. The anodized $TiO_2$ had photocatalytic activity, and showed sponge like shape. The photocatalytic degradation of gas phase acetaldehyde and VOCs by anodized titania has been studied in various initial concentrations, humidity and discharge potentials. The reactivity of anodized titania was increased with relative humidity, but excessive humidity led to a decrease of the reaction rate. The electric dark discharge that was combined with photocatalytic reaction enhanced the decomposition rate of the organic compounds. But excessively applied voltage caused corona discharge, which decreased the reaction rate. Optimum relative humidity was 40% and discharge potential was 5 kV under dark discharge region in photocatalytic reaction.

Diameter-Controllable Synthesis and Enhanced Photocatalytic Activity of Electrospun ZnO Nanofibers (전기방사를 이용하여 제조된 산화아연 나노섬유의 직경제어 및 광촉매 특성)

  • Ji, Myeong-Jun;Yoo, Jaehyun;Lee, Young-In
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.79-86
    • /
    • 2019
  • A heterogeneous photocatalytic system is attracting much interest for water and air purification because of its reusability and economical advantage. Electrospun nanofibers are also receiving immense attention for efficient photocatalysts due to their ultra-high specific surface areas and aspect ratios. In this study, ZnO nanofibers with average diameters of 71, 151 and 168 nm are successfully synthesized by facile electrospinning and a subsequent calcination process at $500^{\circ}C$ for 3 h. Their crystal structures, morphology features and optical properties are systematically characterized by X-ray diffraction, scanning electron microscopy, UV-Vis and photoluminescence spectroscopies. The photocatalytic activities of the ZnO nanofibers are evaluated by the photodegradation of a rhodamine B aqueous solution. The results reveal that the diameter of the nanofiber, controlled by changing the polymer content in the precursor solution, plays an important role in the photocatalytic activities of the synthesized ZnO nanofibers.