DOI QR코드

DOI QR Code

Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants

  • Sudhaik, Anita (School of Chemistry, Faculty of Basic Sciences, Shoolini University) ;
  • Raizada, Pankaj (School of Chemistry, Faculty of Basic Sciences, Shoolini University) ;
  • Shandilya, Pooja (School of Chemistry, Faculty of Basic Sciences, Shoolini University) ;
  • Jeong, Dae-Yong (Department of Materials Science & Engineering, Inha University) ;
  • Lim, Ji-Ho (Department of Materials Science & Engineering, Inha University) ;
  • Singh, Pardeep (School of Chemistry, Faculty of Basic Sciences, Shoolini University)
  • Received : 2018.04.30
  • Accepted : 2018.07.05
  • Published : 2018.11.25

Abstract

Graphitic carbon nitride ($g-C_3N_4$) as a fascinating visible light active semiconductor photocatalyst has medium band gap, non-toxic nature, stable chemical structure and high thermal stability. Recently, intensive researches are focused on photocatalytic activity of $g-C_3N_4$ for wastewater treatment. This review demonstrates latest progress in fabrication of graphitic carbon nitride $C_3N_4$ incorporated nanocomposite to explore photocatalytic ability for water purification. The $g-C_3N_4$-based nanocomposites were categorized as $g-C_3N_4$ metal-free nanocomposite, noble metals/$g-C_3N_4$ heterojunction, non-metal doped $g-C_3N_4$, transition and post transition metal based $g-C_3N_4$ nanocomposite. Apart from fabrication methods, we emphasized on elaborating the mechanism of activity enhancement during photocatalytic process.

Keywords

Acknowledgement

Supported by : Science and Engineering Research Board-DST (SERB)

References

  1. C. Dai, Y. Zhou, H. Peng, S. Huang, X. Zhang, J. Ind. Eng. Chem. 62 (2018) 106. https://doi.org/10.1016/j.jiec.2017.12.049
  2. S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, D. Seifzadeh, J. Taiwan Inst. Chem. Eng. 87 (2018) 98. https://doi.org/10.1016/j.jtice.2018.03.017
  3. A. Akhundi, A. Habibi-Yangjeh, RSC Adv. 6 (2016) 106572. https://doi.org/10.1039/C6RA12414C
  4. M. Mousavi, A. Habibi-Yangjeh, J. Mater. Sci. 53 (2018) 9046. https://doi.org/10.1007/s10853-018-2213-8
  5. M. Pirhashemia, A. Habibi-Yangjeha, S.R. Pouran, J. Ind. Eng. Chem. 62 (2018) 1. https://doi.org/10.1016/j.jiec.2018.01.012
  6. J. Barzegar, A. Habibi-Yangjeh, M. Mousavi, Solid State Sci. 77 (2018) 62. https://doi.org/10.1016/j.solidstatesciences.2018.01.009
  7. B. Pare, P. Singh, S.B. Jonnalgadda, Ind. J. Chem. Sec. A 47 (6) (2008) 830.
  8. M. Mousavi, A. Habibi-Yangjeh, M. Abitorabi, J. Colloid Interface Sci. 480 (2016) 218. https://doi.org/10.1016/j.jcis.2016.07.021
  9. P. Raizada, B. Priya, P. Thakur, P. Singh, Indian J. Chem. Sect. A 55 (7) (2016) 803.
  10. S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, M. Abedi, Sep. Purif. Technol. 199 (2018) 64. https://doi.org/10.1016/j.seppur.2018.01.023
  11. B. Priya, P. Shandilya, P. Raizada, P. Thakur, N. Singh, P. Singh, J. Mol. Catal. A: Chem. 423 (2016) 400. https://doi.org/10.1016/j.molcata.2016.07.043
  12. A. Akhundi, A. Habibi-Yangjeh, Mater. Sci. Semicond. Process. 39 (2015) 162. https://doi.org/10.1016/j.mssp.2015.04.052
  13. X. Miao, X. Shen, J. Wu, Z. Ji, J. Wang, L. Kong, M. Liu, C. Song, Appl. Catal. A: Gen. 539 (2017) 104. https://doi.org/10.1016/j.apcata.2017.04.009
  14. G. Mamba, A. Mishra, Catalysts 6 (2016) 79. https://doi.org/10.3390/catal6060079
  15. P. Raizada, P. Shandilya, P. Singh, P. Thakur, J. Taibah Univ. Sci. 11 (2017) 689. https://doi.org/10.1016/j.jtusci.2016.06.004
  16. A. Akhundi, A. Habibi-Yangjeh, J. Colloid Interface Sci. 482 (2016) 165. https://doi.org/10.1016/j.jcis.2016.08.002
  17. B. Priya, P. Raizada, N. Singh, P. Thakur, P. Singh, J. Colloid Interface Sci. 479 (2016) 271. https://doi.org/10.1016/j.jcis.2016.06.067
  18. M. Mousavi, A. Habibi-Yangjeh, J. Colloid Interface Sci. 465 (2016) 83. https://doi.org/10.1016/j.jcis.2015.11.057
  19. A. Habibi-Yangjeh, M. Mousavi, Adv. Powder Technol. 29 (2018) 1379. https://doi.org/10.1016/j.apt.2018.02.034
  20. A. Fujishima, K. Honda, Nature 238 (1972) 37. https://doi.org/10.1038/238037a0
  21. T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature 277 (1979) 637. https://doi.org/10.1038/277637a0
  22. S. Yamagata, S. Nakabayashi, K.M. Sancier, A. Fujishima, Bull. Chem. Soc. Jpn. 61 (1988) 3429. https://doi.org/10.1246/bcsj.61.3429
  23. M. Anpo, K. Chiba, M. Tomonari, S. Coluccia, M. Che, M.A. Fox, Bull. Chem. Soc. Jpn. 64 (1991) 543. https://doi.org/10.1246/bcsj.64.543
  24. M. Mousavi, A. Habibi-Yangjeh, Mater. Res. Bull. 105 (2018) 159. https://doi.org/10.1016/j.materresbull.2018.04.052
  25. A. Akhundi, A. Habibi-Yangjeh, Mater. Chem. Phys. 174 (2016) 59. https://doi.org/10.1016/j.matchemphys.2016.02.052
  26. O. Legrini, E. Oliveros, A.M. Braun, Chem. Rev. 93 (1993) 671. https://doi.org/10.1021/cr00018a003
  27. P.V. Kamat, Chem. Rev 93 (1993) 267. https://doi.org/10.1021/cr00017a013
  28. M.A. Fox, M.T. Dulay, Chem. Rev. 93 (1993) 341. https://doi.org/10.1021/cr00017a016
  29. A.L. Linsebigler, G.Q. Lu, J.T. Yates, Chem. Rev. 95 (1995) 735. https://doi.org/10.1021/cr00035a013
  30. M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995) 69. https://doi.org/10.1021/cr00033a004
  31. D.P. Ojha, H.P. Karki, H.J. Kim, J. Ind. Eng. Chem. 61 (2018) 87. https://doi.org/10.1016/j.jiec.2017.12.004
  32. M. Mousavi, A. Habibi-Yangjeh, S.R. Pouran, J. Mater. Sci: Mater. Electron. 29 (2018) 1719. https://doi.org/10.1007/s10854-017-8166-x
  33. B. Zhu, L. Zhang, B. Cheng, J. Yu, Appl. Catal. B: Environ. 224 (2018) 983. https://doi.org/10.1016/j.apcatb.2017.11.025
  34. Y. Jianga, F. Lia, Y. Liua, Y. Hong, P. Liu, L. Ni, J. Ind. Eng. Chem. 41 (2016) 130. https://doi.org/10.1016/j.jiec.2016.07.013
  35. N. Gholami, B. Ghasemi, B. Anvaripour, S. Jorfi, J. Ind. Eng. Chem. 62 (2018) 291. https://doi.org/10.1016/j.jiec.2018.01.007
  36. A. Akhundi, A. Habibi-Yangjeh, J. Colloid Interface Sci. 504 (2017) 697. https://doi.org/10.1016/j.jcis.2017.06.025
  37. M. Mousavi, A. Habibi-Yangjeh, Adv. Powder Technol. 28 (2017) 1540. https://doi.org/10.1016/j.apt.2017.03.025
  38. P. Raizada, J. Kumari, P. Shandilya, P. Singh, Desalin. Water Treat. 79 (2017) 204. https://doi.org/10.5004/dwt.2017.20831
  39. B. Appavu, K. Kannan, S.K. Thiripuranthagan, J. Ind. Eng. Chem. 36 (2016) 184. https://doi.org/10.1016/j.jiec.2016.01.042
  40. A. Akhundi, A. Habibi-Yangjeh, Appl. Surf. Sci 358 (2015) 261. https://doi.org/10.1016/j.apsusc.2015.08.149
  41. P. Raizda, S. Gautam, B. Priya, P. Singh, Adv. Mater. Lett. 7 (4) (2016) 312. https://doi.org/10.5185/amlett.2016.5847
  42. P. Singh, P. Raizada, S. Kumari, A. Kumar, D. Pathania, P. Thakur, Appl. Catal. A: Gen. 476 (2014) 9. https://doi.org/10.1016/j.apcata.2014.02.009
  43. B. Liu, L. Ye, R. Wang, J. Yang, Y. Zhang, R. Guan, L. Tian, X. Chen, ACS Appl. Mater. Interfaces 10 (2018) 4001. https://doi.org/10.1021/acsami.7b17503
  44. P. Raizada, P. Singh, A. Kumar, B. Pare, S.B. Jonnalagadda, Sep. Purif. Technol. 133 (2014) 429. https://doi.org/10.1016/j.seppur.2014.07.012
  45. J. Shrine, M. Nithya, J. Yeon, D.M. Kang, J. Ind. Eng. Chem. 57 (2018).
  46. S. Malato, P. Fernandez-Ibanez, M.I. Maldonado, J. Blanco, W. Gernjak, Catal. Today 147 (2009) 1. https://doi.org/10.1016/j.cattod.2009.06.018
  47. X. Lang, X. Chen, J. Zhao, Chem. Soc. Rev. 43 (2014) 473. https://doi.org/10.1039/C3CS60188A
  48. P. Raizada, P. Singh, A. Kumar, G. Sharma, B. Pare, S.B. Jonnalgadda, P. Thakur, Appl. Catal. A: Gen. 486 (2014) 159. https://doi.org/10.1016/j.apcata.2014.08.043
  49. S. Vadivel, D. Maruthamani, A. Habibi-Yangjeh, B. Paul, S.S. Dhar, K. Selvam, J. Colloid Interface Sci. 480 (2016) 126. https://doi.org/10.1016/j.jcis.2016.07.012
  50. X.N. Wei, H.L. Wang, X.K. Wang, W.F. Jiang, Appl. Surf. Sci. 426 (2017) 1271. https://doi.org/10.1016/j.apsusc.2017.08.181
  51. X. Chen, L. Liu, F. Huang, Chem. Soc. Rev. 44 (2015) 1861. https://doi.org/10.1039/C4CS00330F
  52. Q. Tanga, X. Menga, Z. Wang, J. Zhou, H. Tang, Appl. Surf. Sci. 430 (2018) 253. https://doi.org/10.1016/j.apsusc.2017.07.288
  53. X. Wang, Z. Zhou, Z. Liang, Z. Zhuang, Y. Yu, Appl. Surf. Sci. 423 (2017) 225. https://doi.org/10.1016/j.apsusc.2017.06.050
  54. M. Amiri, H. Salehniya, A. Habibi-Yangjeh, Ind. Eng. Chem. Res. 55 (2016) 8114. https://doi.org/10.1021/acs.iecr.6b01699
  55. W. Huang, N. Liua, X. Zhang, M. Wu, L. Tang, Appl. Surf. Sci. 425 (2017) 107. https://doi.org/10.1016/j.apsusc.2017.07.050
  56. K. Kalpana, V. Selvaraj, J. Ind. Eng. Chem. 41 (2016) 105. https://doi.org/10.1016/j.jiec.2016.07.016
  57. P. Singh, P. Raizada, D. Pathania, A. Kumar, P. Thakur, Int. J. Photoenergy (2013) (2013) 7.
  58. P. Singh, S. Gautam, P. Shandilya, B. Priya, V.P. Singh, P. Raizada, Adv. Mater. Lett. 8 (3) (2017) 229. https://doi.org/10.5185/amlett.2017.1467
  59. S. Gautam, P. Shandilya, B. Priya, V.P. Singh, P. Raizada, R. Rai, M.A. Valente, P. Singh, Sep. Purif. Technol. 172 (2017) 498. https://doi.org/10.1016/j.seppur.2016.09.006
  60. D. He, Y. Chen, Y. Situ, L. Zhong, H. Huang, Appl. Surf. Sci. 425 (2017) 862. https://doi.org/10.1016/j.apsusc.2017.06.124
  61. A. Akhundi, A. Habibi-Yangjeh, Ceram. Int. 41 (2015) 5634. https://doi.org/10.1016/j.ceramint.2014.12.145
  62. S. Gautam, P. Shandilya, V.P. Singh, P. Raizada, P. Singh, J. Water Process Eng. 14 (2016) 86. https://doi.org/10.1016/j.jwpe.2016.10.008
  63. A. Akhundi, A. Habibi-Yangjeh, Adv. Powder Technol. 28 (2017) 565. https://doi.org/10.1016/j.apt.2016.10.025
  64. M. Mousavi, A. Habibi-Yangjeh, Mater. Chem. Phys. 163 (2015) 421. https://doi.org/10.1016/j.matchemphys.2015.07.061
  65. P. Raizada, J. Kumari, R. Dhiman, V.P. Singh, P. Singh, Process Saf. Environ. Prot. 106 (2017) 104. https://doi.org/10.1016/j.psep.2016.12.012
  66. D. Yazdani, A.A. Zinatizadeh, M. Joshaghani, J. Ind. Eng. Chem. 63 (2018) 65. https://doi.org/10.1016/j.jiec.2018.01.041
  67. B. Pare, P. Singh, S.B. Jonnalgadda, J. Sci. Ind. Res. 68 (8) (2009) 724.
  68. G. Dong, W. Ho, C. Wang, J. Mater. Chem. A 3 (2015) 23435. https://doi.org/10.1039/C5TA06540B
  69. J. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater. 8 (2018) 1701503. https://doi.org/10.1002/aenm.201701503
  70. A. Habibi-Yangjeh, A. Akhundi, J. Mol. Catal. A: Chem. 415 (2016) 122. https://doi.org/10.1016/j.molcata.2016.01.032
  71. A.Y. Liu, M.L. Cohen, Science 245 (4920) (1989) 841. https://doi.org/10.1126/science.245.4920.841
  72. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8 (2009) 76. https://doi.org/10.1038/nmat2317
  73. M.Q. Wen, T. Xiong, Z.G. Zang, W. Wei, X.S. Tang, F. Dong, Opt. Express 24 (2016) 10205. https://doi.org/10.1364/OE.24.010205
  74. K. He, J. Xie, Z.Q. Liu, N. Li, X. Chen, J. Hu, X. Li, J. Mater. Chem. A (2018), doi: http://dx.doi.org/10.1039/C8TA03048K.
  75. J. Zhang, X. Mao, W. Xiao, Y. Zhuang, Chin. J. Catal. 38 (2017) 2009. https://doi.org/10.1016/S1872-2067(17)62935-8
  76. T.S. Anirudhan, J.R. Deepa, A.S. Nair, J. Ind. Eng. Chem. 47 (2017) 415. https://doi.org/10.1016/j.jiec.2016.12.014
  77. W. Ho, Z. Zhang, M. Xu, X. Zhang, X. Wang, Y. Huang, Appl. Catal. B 179 (2015) 106. https://doi.org/10.1016/j.apcatb.2015.05.010
  78. X. Miao, X. Yue, Z. Ji, X. Shen, H. Zhou, M. Liu, K. Xu, J. Zhu, G. Zhu, L. Kong, Appl. Catal. B: Environ. 227 (2018) 459. https://doi.org/10.1016/j.apcatb.2018.01.057
  79. Y. Kang, Y. Yang, L.C. Yin, X. Kang, G. Liu, H.M. Cheng, Adv. Mater. 27 (2015) 4572. https://doi.org/10.1002/adma.201501939
  80. J. Wen, J. Xie, X. Chen, X. Li, Appl. Surface Sci. 391 (2017) 72. https://doi.org/10.1016/j.apsusc.2016.07.030
  81. Z. Zhao, Y. Sun, F. Dong, Nanoscale 7 (2015) 15. https://doi.org/10.1039/C4NR03008G
  82. G. Mamba, A.K. Mishra, Appl. Catal. B 198 (2016) 347. https://doi.org/10.1016/j.apcatb.2016.05.052
  83. Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 51 (2012) 68. https://doi.org/10.1002/anie.201101182
  84. Q. Tay, P. Kanhere, C.F. Ng, S. Chen, S. Chakraborty, A.C.H. Huan, T.C. Sum, R. Ahuja, Z. Chen, Chem. Mater. 27 (2015) 4930. https://doi.org/10.1021/acs.chemmater.5b02344
  85. M. Zhou, Z. Hou, X. Chen, Part. Part. Syst. Charact. 35 (2018) 1700038. https://doi.org/10.1002/ppsc.201700038
  86. H.J. Yan, Y. Chen, S.M. Xu, Int. J. Hyd. Energy 37 (2012) 125. https://doi.org/10.1016/j.ijhydene.2011.09.072
  87. J. Wen, J. Xie, H. Zhang, A. Zhang, Y. Liu, X. Chen, X. Li, ACS Appl. Mater. Interfaces 9 (2017) 14031. https://doi.org/10.1021/acsami.7b02701
  88. X. Li, G. Hartley, A.J. Ward, P.A. Young, A.F. Masters, T. Maschmeyer, J. Phys. Chem. C 119 (2015) 14938. https://doi.org/10.1021/acs.jpcc.5b03538
  89. K. He, J. Xie, Z. Yang, R. Shen, Y. Fang, S. Ma, X. Chen, X. Li, Catal. Sci. Technol. 7 (2017) 1193. https://doi.org/10.1039/C7CY00029D
  90. R. Shen, J. Xie, P. Guo, L. Chen, X. Chen, X. Li, ACS Appl. Energy Mater. 1 (2018) 2232. https://doi.org/10.1021/acsaem.8b00311
  91. Q. Liang, Z. Li, Z.H. Huang, F. Kang, Q.H. Yang, Adv. Funct. Mater. 25 (2015) 6885. https://doi.org/10.1002/adfm.201503221
  92. R. Shen, J. Xie, X. Lu, X. Chen, X. Li, ACS Sustainable Chem. Eng. 6 (2018) 4026. https://doi.org/10.1021/acssuschemeng.7b04403
  93. S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25 (2009) 10397. https://doi.org/10.1021/la900923z
  94. B. Zhu, J. Zhang, C. Jiang, B. Cheng, J. Yu, Appl. Catal. B: Environ. 207 (2017) 27. https://doi.org/10.1016/j.apcatb.2017.02.020
  95. F. Dong, Z. Wang, Y. Sun, W.K. Ho, H. Zhang, J. Colloid Interface Sci. 401 (2013) 70. https://doi.org/10.1016/j.jcis.2013.03.034
  96. R. Shen, J. Xie, H. Zhang, A. Zhang, X. Chen, X. Li, ACS Sustainable Chem. Eng. 6 (2018) 816. https://doi.org/10.1021/acssuschemeng.7b03169
  97. M. Zhou, Z. Hou, X. Chen, Dalton Trans. 46 (2017) 10641. https://doi.org/10.1039/C7DT00761B
  98. P. Yang, J. Zhao, W. Qiao, L. Li, Z. Zhu, Nanoscale 7 (2015) 18887. https://doi.org/10.1039/C5NR05570A
  99. J. Liu, S. Xie, Z. Geng, K. Huang, L. Fan, W. Zhou, L. Qiu, D. Gao, L. Ji, L. Duan, L. Lu, W. Li, S. Bai, Z. Liu, W. Chen, S. Feng, Y. Zhang, Nano Lett. 16 (2016) 6568. https://doi.org/10.1021/acs.nanolett.6b03229
  100. S. Ma, S. Zhan, Y. Jia, Q. Shi, Q. Zhou, Appl. Catal. B 186 (2016) 77. https://doi.org/10.1016/j.apcatb.2015.12.051
  101. M. Zhou, Z. Hou, L. Zhang, Y. Liu, Q. Gao, X. Chen, Sustainable Energy Fuels 1 (2017) 317. https://doi.org/10.1039/C6SE00004E
  102. X. Wu, S. Jiang, S. Song, C. Sun, Appl. Surf. Sci. 430 (2018) 371. https://doi.org/10.1016/j.apsusc.2017.06.065
  103. J. Wen, J. Xie, Z. Yang, R. Shen, H. Li, X.Y. Luo, X. Chen, X. Li, ACS Sustainable Chem. Eng. 5 (2017) 2224. https://doi.org/10.1021/acssuschemeng.6b02490
  104. Y. Fua, W. Liang, J. Guo, H. Tang, S. Liu, Appl. Surf. Sci. 430 (2018) 234. https://doi.org/10.1016/j.apsusc.2017.08.042
  105. Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao, Z. Zhang, L. Qu, ACS Nano 10 (2016) 2745. https://doi.org/10.1021/acsnano.5b07831
  106. L. Shi, L. Liang, F. Wang, M. Liu, S. Zhong, J. Sun, Catal. Commun. 59 (2015) 131. https://doi.org/10.1016/j.catcom.2014.10.014
  107. Z. Zhu, Z. Lu, D. Wang, X. Tang, Y. Yan, W. Shi, Y. Wang, N. Gao, X. Yao, H. Dong, Appl. Catal. B 182 (2016) 115. https://doi.org/10.1016/j.apcatb.2015.09.029
  108. S. Verma, R.B.N. Baig, C. Han, M.N. Nadagouda, R.S. Varma, Chem. Commun. 51 (2015) 15554. https://doi.org/10.1039/C5CC05895C
  109. Y. Fu, Z. Li, Q. Liu, X. Yang, H. Tang, Chin. J. Catal. 38 (2017) 2160. https://doi.org/10.1016/S1872-2067(17)62911-5
  110. L. Ma, G. Wang, C. Jiang, H. Bao, Q. Xu, Appl. Surf. Sci. 430 (2018) 263. https://doi.org/10.1016/j.apsusc.2017.07.282
  111. A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Muller, R. Schlogl, J.M. Carlsson, J. Mater. Chem 18 (2008) 4893. https://doi.org/10.1039/b800274f
  112. F. Fina, S.K. Callear, G.M. Carins, J. Irvine, Chem. Mater. 27 (2015) 2612. https://doi.org/10.1021/acs.chemmater.5b00411
  113. M.J. Bojdys, J.O. Müller, M. Antonietti, A. Thomas, Chem. Eur. J.14 (2008) 8177. https://doi.org/10.1002/chem.200800190
  114. J. Wang, D. Hao, J. Ye, N. Umezawa, Chem. Mater. 29 (2017) 2694. https://doi.org/10.1021/acs.chemmater.6b02969
  115. F.H. Abd El-kader, M.A. Moharram, M.G. Khafagia, F. Mamdouh, Acta A: Mol. Biomol. Spectrosc. 97 (2012) 1115. https://doi.org/10.1016/j.saa.2012.07.126
  116. D.M. Teter, R.J. Hemley, Science 271 (1996) 53. https://doi.org/10.1126/science.271.5245.53
  117. Y. Zhao, J. Zhang, L. Qu, ChemNanoMat 1 (2015) 29.
  118. A. Zambon, J.M. Mouesca, C. Gheorghiu, P.A. Bayle, J. Pecaut, M. Claeys-Bruno, S. Gambarelli, L. Dubois, Chem. Sci. 7 (2016) 945. https://doi.org/10.1039/C5SC02992A
  119. J. Gao, Y. Zhou, Z.S. Li, S.C. Yan, N.Y. Wang, Z.G. Zou, Nanoscale 4 (2012) 3687. https://doi.org/10.1039/c2nr30777d
  120. J.S. Zhang, M.W. Zhang, G.G. Zhang, X.C. Wang, ACS Catal. 2 (2012) 940. https://doi.org/10.1021/cs300167b
  121. Y.H. Zhang, Q.W. Pan, G.Q. Chai, M.R. Liang, G.P. Dong, Q.Y. Zhang, J.R. Qiu, Sci. Rep. 3 (2013) 1943. https://doi.org/10.1038/srep01943
  122. G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74 (2002) 601. https://doi.org/10.1103/RevModPhys.74.601
  123. W. Wei, T. Jacob, Phys. Rev. B 87 (2013) 085202. https://doi.org/10.1103/PhysRevB.87.085202
  124. J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, J. Mater. Chem. 21 (2011) 14398. https://doi.org/10.1039/c1jm12620b
  125. Y. Zhang, J. Liu, G. Wu, W. Chen, Nanoscale 4 (2012) 5300. https://doi.org/10.1039/c2nr30948c
  126. Y.P. Yuan, W.T. Xu, L.S. Yin, S.W. Cao, Y.S. Liao, Y.Q. Tng, C. Xue, Int. J. Hydrogen Energy 38 (2013) 13159. https://doi.org/10.1016/j.ijhydene.2013.07.104
  127. Z. Mo, X. She, Y. Li, L. Liu, L. Huang, Z. Chen, Q. Zhang, H. Xu, H. Li, RSC Adv. 5 (2015) 101552. https://doi.org/10.1039/C5RA19586A
  128. Y. Chen, B. Wang, S. Lin, Y. Zhang, X. Wang, J. Phys. Chem. C 118 (2014) 29981. https://doi.org/10.1021/jp510187c
  129. Q. Gu, Z. Gao, H. Zhao, Z. Lou, Y. Liao, C. Xue, RSC Adv. 5 (2015) 49317. https://doi.org/10.1039/C5RA07284K
  130. D.J. Martin, K. Qiu, S.A. Shevlin, A.D. Handoko, X. Chen, Z. Guo, J. Tang, Angew. Chem. Int. Ed. 53 (2014) 9240. https://doi.org/10.1002/anie.201403375
  131. P. Niu, L.C. Yin, Y.Q. Yang, G. Liu, H.M. Cheng, Adv. Mater. 26 (2014) 8046. https://doi.org/10.1002/adma.201404057
  132. G. Zhang, J. Zhang, M. Zhang, X. Wang, J. Mater. Chem. 22 (2012) 8083. https://doi.org/10.1039/c2jm00097k
  133. F. Dong, Y. Sun, L. Wu, M. Fu, Z. Wu, Catal. Sci. Technol. 2 (2012) 1332. https://doi.org/10.1039/c2cy20049j
  134. B. Long, J. Lin, X. Wang, J. Mater. Chem. A 2 (2014) 2942. https://doi.org/10.1039/c3ta14339b
  135. L. Shi, L. Liang, F. Wang, J. Ma, J. Sun, Catal. Sci. Technol. 4 (2014) 3235. https://doi.org/10.1039/C4CY00411F
  136. Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S.Z. Qiao, Nat. Commun. 5 (2014) 3783. https://doi.org/10.1038/ncomms4783
  137. X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, M. Antonietti, J. Am. Chem. Soc. 131 (2009) 1680. https://doi.org/10.1021/ja809307s
  138. M. Groenewolt, M. Antonietti, Adv. Mater. 17 (2005) 1789. https://doi.org/10.1002/adma.200401756
  139. Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Angew. Chem. Int. Ed. 53 (2014) 11926. https://doi.org/10.1002/anie.201407319
  140. Y. Wang, J. Zhang, X. Wang, M. Antonietti, H. Li, Angew. Chem. 122 (2010) 3428. https://doi.org/10.1002/ange.201000120
  141. Y. Li, L. Fang, R. Jin, Y. Yang, X. Fang, Y. Xing, S. Song, Nanoscale 7 (2015) 758. https://doi.org/10.1039/C4NR06565D
  142. M. Lan, G. Fan, L. Yang, F. Li, RSC Adv. 5 (2015) 5725. https://doi.org/10.1039/C4RA07073A
  143. Q. Huang, J. Yu, S. Cao, C. Cui, B. Cheng, Appl. Surf. Sci. 358 (2015) 355.
  144. L. Zhang, D.W. Jing, X.L. She, H.W. Liu, D.J. Yang, Y. Lu, J. Li, Z.F. Zheng, L.J. Guo, J. Mater. Chem. A 2 (2014) 2071. https://doi.org/10.1039/C3TA14047D
  145. T.Y. Ma, Y. Tang, S. Dai, S.Z. Qiao, Proton - Functionalized Two - Dimensional Graphitic Carbon Nitride Nanosheet: An Excellent Metal - /Label - Free Biosensing Platform, 10 (2014) 2382-2389. https://doi.org/10.1002/smll.201303827
  146. J. Xu, L. Zhang, R. Shia, Y. Zhu, J. Mater. Chem. A 1 (2013) 14766. https://doi.org/10.1039/c3ta13188b
  147. F. Chang, J. Zhang, Y.C. Xie, J. Chen, C.L. Li, J. Wang, J.R. Luo, B.Q. Deng, X.F. Hu, Appl. Surf. Sci. 311 (2014) 574. https://doi.org/10.1016/j.apsusc.2014.05.111
  148. Y. Chen, J. Li, Z. Hong, B. Shen, B. Lin, B. Gao, Phys. Chem. Chem. Phys.16 (2014) 8106. https://doi.org/10.1039/c3cp55191a
  149. A. Suryawanshi, P. Dhanasekaran, D. Mhamane, S. Kelkar, S. Patil, N. Gupta, S. Ogale, Int. J. Hyd. Energy 37 (2012) 9584. https://doi.org/10.1016/j.ijhydene.2012.03.123
  150. Y. Sui, J.H. Liu, Y.W. Zhang, X.K. Tian, W. Chen, Nanoscale 5 (2013) 9150. https://doi.org/10.1039/c3nr02413j
  151. Y.P. Yuan, S.W. Cao, Y.S. Liao, L.S. Yin, C. Xue, Appl. Catal. B 140-141 (2013) 164. https://doi.org/10.1016/j.apcatb.2013.04.006
  152. J.S. Zhang, M.W. Zhang, R.Q. Sun, X.C. Wang, Angew. Chem. 124 (2012) 10292. https://doi.org/10.1002/ange.201205333
  153. G. Wu, S.S. Thind, J. Wen, K. Yan, A. Chen, Appl. Catal. B 142-143 (2013) 590. https://doi.org/10.1016/j.apcatb.2013.05.070
  154. X. Chen, H. Chen, J. Guan, J. Zhen, Z. Sun, P. Du, Y. Lu, S. Yang, Nanoscale 9 (17) (2017) 5615. https://doi.org/10.1039/C7NR01237C
  155. Y. Cui, Z. Ding, X. Fu, X. Wang, Angew. Chem. Int. Ed. 51 (2012) 11814. https://doi.org/10.1002/anie.201206534
  156. A. Suryawanshi, P. Dhanasekaran, D. Mhamane, S. Kelkar, S. Patil, N. Gupta, S. Ogale, Int. J. Hyd. Energy 37 (2012) 9584. https://doi.org/10.1016/j.ijhydene.2012.03.123
  157. S. Patnaik, S. Martha, S. Acharya, K. Parida, Inorg. Chem. Front 3 (2016) 336. https://doi.org/10.1039/C5QI00255A
  158. W.J. Ong, M.M. Gui, S.P. Chai, A.R. Mohamed, RSC Adv. 3 (2013) 4505. https://doi.org/10.1039/c3ra00030c
  159. W.B. Luo, S.L. Chou, J.Z. Wang, Y.C. Zhai, H.K. Liu, Small 11 (2015) 2817. https://doi.org/10.1002/smll.201403535
  160. D.S. Su, S. Perathoner, G. Centi, Chem. Rev. 113 (2013) 5782. https://doi.org/10.1021/cr300367d
  161. B. Chai, X. Liao, F. Song, H. Zhou, Dalton Trans. 43 (2014) 982. https://doi.org/10.1039/C3DT52454J
  162. X. Bai, L. Wang, Y. Wang, W. Yao, Y. Zhu, Appl. Catal. B 152-153 (2014) 262. https://doi.org/10.1016/j.apcatb.2014.01.046
  163. H. Fu, T. Xu, S. Zhu, Y. Zhu, Environ. Sci. Technol. 42 (2008) 8064. https://doi.org/10.1021/es801484x
  164. L.L. Tan, W.J. Ong, S.P. Chai, A.R. Mohamed, Catal. Today 217 (2013) 1. https://doi.org/10.1016/j.cattod.2012.10.023
  165. G. Wu, Y. Hu, Y. Liu, J. Zhao, X. Chen, V. Whoehling, C. Plesse, G.T.M. Nguyen, F. Vidal, W. Chen, Nat. Commun. 6 (2015) 7258. https://doi.org/10.1038/ncomms8258
  166. R.C. Pawar, S. Kang, S.H. Ahn, C.S. Lee, RSC Adv. 5 (2015) 24281. https://doi.org/10.1039/C4RA15560B
  167. J. Zhang, M. Zhang, L. Lin, X. Wang, Angew. Chem. Int. Ed. 54 (2015) 6297. https://doi.org/10.1002/anie.201501001
  168. L. Ge, C. Han, Appl. Catal. B 117-118 (2012) 268. https://doi.org/10.1016/j.apcatb.2012.01.021
  169. Y. Zhang, A. Thomas, M. Antonietti, X. Wang, J. Am. Chem. Soc. 131 (2009) 50. https://doi.org/10.1021/ja808329f
  170. Y. Xu, H. Xu, L. Wang, J. Yan, H. Li, Y. Song, L. Huang, G. Cai, Dalton Trans. 42 (2013) 7604. https://doi.org/10.1039/c3dt32871f
  171. Y. Zhong, J. Yuan, J. Wen, X. Li, Y. Xu, W. Liu, S. Zhang, Y. Fang, Dalton Trans. 44 (2015) 18260. https://doi.org/10.1039/C5DT02693H
  172. T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 53 (2014) 7281. https://doi.org/10.1002/anie.201403946
  173. Y. Zhao, F. Zhao, X. Wang, C. Xu, Z. Zhang, G. Shi, L. Qu, Angew. Chem. Int. Ed. 53 (2014) 13934. https://doi.org/10.1002/anie.201409080
  174. J. Oh, S. Lee, K. Zhang, J.O. Hwang, J. Han, G. Park, S.O. Kim, J.H. Park, S. Park, Carbon 66 (2014) 119. https://doi.org/10.1016/j.carbon.2013.08.049
  175. Y. Hou, J. Li, Z. Wen, S. Cui, C. Yuan, Nano Energy 8 (2014) 157. https://doi.org/10.1016/j.nanoen.2014.06.003
  176. J. Tian, R. Ning, Q. Liu, A.M. Asiri, A.O. Al-Youbi, X. Sun, ACS Appl. Mater. Interface 6 (2014) 1011. https://doi.org/10.1021/am404536w
  177. D. Deng, K.S. Novoselov, Q. Fu, N. Zheng, Z. Tian, X. Bao, Nat. Nanotechnol. 11 (2016) 218. https://doi.org/10.1038/nnano.2015.340
  178. S. Park, R.S. Ruoff, Nat. Nanotechnol. 4 (2009) 217. https://doi.org/10.1038/nnano.2009.58
  179. A.K. Geim, K.S. Novoselov, Nat. Mater. 6 (2007) 183. https://doi.org/10.1038/nmat1849
  180. L.L. Tan, S.P. Chai, A.R. Mohamed, ChemSusChem. 5 (2012) 1868. https://doi.org/10.1002/cssc.201200480
  181. F. Li, X. Jiang, J. Zhao, S. Zhang, Nano Energy 16 (2015) 488. https://doi.org/10.1016/j.nanoen.2015.07.014
  182. N. Gao, X. Fang, Chem. Rev. 115 (2015) 8294. https://doi.org/10.1021/cr400607y
  183. Z. Tong, D. Yang, J. Shi, Y. Nan, Y. Sun, Z. Jiang, ACS Appl. Mater. Interfaces 7 (2015) 25693. https://doi.org/10.1021/acsami.5b09503
  184. K. Zhu, Y. Du, J. Liu, X. Fan, Z. Duan, G. Song, A. Meng, Z. Li, Q. Li, J. Nanosci. Nanotechnol. 17 (2017) 2515. https://doi.org/10.1166/jnn.2017.13439
  185. Q. Han, N. Chen, J. Zhang, L. Qu, RSC. Mater. Horiz. 4 (2017) 832. https://doi.org/10.1039/C7MH00379J
  186. J.G. Yu, G.P. Dai, B.B. Huang, J. Phys. Chem. C 113 (2009) 16394. https://doi.org/10.1021/jp905247j
  187. G. Williams, B. Seger, P.V. Kamat, ACS Nano 2 (2008) 1487. https://doi.org/10.1021/nn800251f
  188. A.K. Geim, Science 324 (2009) 1530. https://doi.org/10.1126/science.1158877
  189. Y.B. Li, H.M. Zhang, P.R. Liu, D. Wang, Y. Li, H.J. Zhao, Small 9 (2013) 3336.
  190. W.J. Wang, J.C. Yu, D.H. Xia, P.K. Wong, Y.C. Li, Environ. Sci. Technol. 47 (2013) 8724. https://doi.org/10.1021/es4013504
  191. F. He, G. Chen, Y. Zhou, Y. Yu, L. Li, S. Hao, B. Liu, J. Mater. Chem. A 4 (2016) 3822. https://doi.org/10.1039/C6TA00497K
  192. S. Fang, Y. Xia, K. Lv, Q. Li, J. Sun, M. Li, Appl. Catal. B: Environ. 185 (2016) 225. https://doi.org/10.1016/j.apcatb.2015.12.025
  193. Y. Ma, E. Liu, X. Hu, C. Tang, J. Wan, J. Li, J. Fan, Appl. Surf. Sci. 358 (2015) 246 (Part A). https://doi.org/10.1016/j.apsusc.2015.08.174
  194. Q. Liang, Z. Li, Z.H. Huang, F. Kang, Q.H. Yang, Adv. Funct. Mater. 25 (2015) 6885. https://doi.org/10.1002/adfm.201503221
  195. X. Xia, N. Deng, G. Cui, J. Xie, X. Shi, Y. Zhao, Q. Wang, W. Wang, B. Tang, Chem. Commun. 51 (2015) 10899. https://doi.org/10.1039/C5CC02589C
  196. Y. Wang, M. Qiao, J. Lv, G. Xua, Z. Zheng, X. Zhang, Y. Wu, Fullerenes Nanotubes Carbon Nanostruct. 26 (4) (2018) 210. https://doi.org/10.1080/1536383X.2018.1427737
  197. F. Dong, Z.W. Zhao, T. Xiong, Z.L. Ni, W.D. Zhang, Y.J. Sun, W.K. Ho, ACS Appl. Mater. Interfaces 5 (2013) 11392. https://doi.org/10.1021/am403653a
  198. L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Inorg. Chim. Acta 363 (2010) 4163. https://doi.org/10.1016/j.ica.2010.07.057
  199. X.R. Wang, X.L. Li, L. Zhang, Y. Yoon, P.K. Weber, H.L. Wang, J. Guo, H.J. Dai, Science 324 (2009) 768. https://doi.org/10.1126/science.1170335
  200. L. Zhao, N. Baccile, S. Gross, Y.J. Zhang, W. Wei, Y.H. Sun, M. Antonietti, M.M. Titirici, Carbon 48 (2010) 3778. https://doi.org/10.1016/j.carbon.2010.06.040
  201. Q. Wang, C.C. Chen, W.H. Ma, H.Y. Zhu, J.C. Zhao, Chem. Eur. J. 15 (2009) 4765. https://doi.org/10.1002/chem.200900221
  202. N. Fukata, Adv. Mater. 21 (2009) 2829. https://doi.org/10.1002/adma.200900376
  203. X.C. Wang, X.F. Chen, A. Thomas, X.Z. Fu, M. Antonietti, Adv. Mater. 21 (2009) 1609. https://doi.org/10.1002/adma.200802627
  204. K. Maeda, K. Domen, J. Phys. Chem. C 111 (2007) 7851. https://doi.org/10.1021/jp070911w
  205. Z.X. Ding, X.F. Chen, M. Antonietti, X.C. Wang, ChemSusChem 4 (2011) 274.
  206. G.D. Ding, W.T. Wang, T. Jiang, B.X. Han, H.L. Fan, G.Y. Yang, ChemCatChem 5 (2013) 192. https://doi.org/10.1002/cctc.201200502
  207. J. Gao, Y. Wang, S. Zhou, W. Lin, Y. Kong, ChemCatChem 9 (2017) 1708. https://doi.org/10.1002/cctc.201700492
  208. S. Hu, R. Jin, G. Lu, D. Liu, J. Gui, RSC Adv. 4 (2014) 24863. https://doi.org/10.1039/c4ra03290j
  209. L. Kong, Y. Dong, P. Jiang, G. Wang, H. Zhang, N. Zhao, J. Mater. Chem. A 4 (2016) 9998. https://doi.org/10.1039/C6TA03178A
  210. A. Indra, P.W. Menezes, K. Kailasam, D. Hollmann, M. Schröder, A. Thomas, A. Brückner, M. Driess, Chem. Commun. (Camb) 52 (1) (2016) 104. https://doi.org/10.1039/C5CC07936E
  211. S. Le, T. Jiang, Q. Zhao, X.F. Liu, Y. Li, B. Fangn, M. Gong, RSC Adv. 6 (2016) 38811. https://doi.org/10.1039/C6RA03982K
  212. J. Gao, J. Wang, X. Qian, Y. Dong, H. Xu, R. Song, C. Yan, H. Zhu, Q. Zhong, G. Qian, J. Yao, J. Solid State Chem. 228 (2015) 60. https://doi.org/10.1016/j.jssc.2015.04.027
  213. X.G. Ma, Y.H. Lv, J. Xu, Y.F. Liu, R.Q. Zhang, Y.F. Zhu, J. Phys. Chem. C 116 (2012) 23485. https://doi.org/10.1021/jp308334x
  214. M. Shao, L. Cheng, X. Zhang, D.D.D. Ma, S. Lee, J. Am. Chem. Soc. 131 (2009) 17738. https://doi.org/10.1021/ja908085c
  215. Z. Li, G.D. Del Cul, W. Yan, C. Liang, S. Dai, J. Am. Chem. Soc. 126 (2004) 12782. https://doi.org/10.1021/ja046589+
  216. J.T. Robinson, J.S. Burgess, C.E. Junkermeier, S.C. Badescu, T.L. Reinecke, F.K. Perkins, M.K. Zalautdniov, J.W. Baldwin, J.C. Culbertson, P.E. Sheehan, E.S. Snow, Nano Lett. 10 (2010) 3001. https://doi.org/10.1021/nl101437p
  217. S. Bai, Y. Xiong, Chem. Commun. 51 (2015) 10261. https://doi.org/10.1039/C5CC02704G
  218. Y. Wang, J. Zhang, X. Wang, M. Antonietti, H. Li, Angew. Chem. Int. Ed. 49 (2010) 3356. https://doi.org/10.1002/anie.201000120
  219. J.S. Zhang, M.W. Zhang, R.Q. Sun, X.C. Wang, Angew. Chem. Int. 51 (2012) 10145. https://doi.org/10.1002/anie.201205333
  220. S. Guo, Y. Zhu, Y. Yan, Y. Min, J. Fan, Q. Xu, Appl. Catal. B 185 (2016) 315. https://doi.org/10.1016/j.apcatb.2015.11.030
  221. Y. Bu, Z. Chen, Electrochim. Acta 144 (2014) 42. https://doi.org/10.1016/j.electacta.2014.08.095
  222. G. Dong, Z. Ai, L. Zhang, RSC Adv. 4 (2014) 5553. https://doi.org/10.1039/c3ra46068a
  223. X. She, L. Liu, H. Ji, Z. Mo, Y. Li, L. Huang, D. Du, H. Xu, H. Li, Appl. Catal. B 187 (2016) 144. https://doi.org/10.1016/j.apcatb.2015.12.046
  224. G. Dong, K. Zhao, L. Zhang, Chem. Commun. 48 (2012) 6178. https://doi.org/10.1039/c2cc32181e
  225. P. Zhang, X. Li, C. Shao, Y. Liu, J. Mater. Chem. A 3 (2015) 3281. https://doi.org/10.1039/C5TA00202H
  226. F. Wang, P. Chen, Y. Feng, Z. Xie, Y. Liu, Y. Su, Q. Zhang, Y. Wang, K. Yao, W. Lv, G. Liu, Appl. Catal. B: Environ. 207 (2017) 103. https://doi.org/10.1016/j.apcatb.2017.02.024
  227. D.H. Lan, H.T. Wang, L. Chen, C.T. Au, S.F. Yin, Carbon 100 (2016) 81. https://doi.org/10.1016/j.carbon.2015.12.098
  228. C. Xu, Q. Han, Y. Zhao, L. Wang, Y. Li, L.J. Qu, Mater. Chem. A 3 (2015) 1841. https://doi.org/10.1039/C4TA06149G
  229. X. Ma, Y. Lv, J. Xu, Y. Liu, R. Zhang, Y.J. Zhu, Phys. Chem. C 116 (2012) 23485. https://doi.org/10.1021/jp308334x
  230. S. Lin, X. Ye, X. Gao, J. Huang, J. Mol. Catal. A: Chem. 406 (2015) 137. https://doi.org/10.1016/j.molcata.2015.05.018
  231. C. Lu, R. Chen, X. Wu, M. Fan, Y. Liu, Z. Le, S. Jiang, S. Song, Appl. Surf. Sci. 360 (2016) 1016 (Part B). https://doi.org/10.1016/j.apsusc.2015.11.112
  232. F. Raziq, Y. Qu, X. Zhang, M. Humayun, J. Wu, A. Zada, H. Yu, X. Sun, L. Jing, J. Phys. Chem. C 120 (2016) 98. https://doi.org/10.1021/acs.jpcc.5b10313
  233. H. Pan, H. Zhang, H. Liu, L. Chen, Solid State Commun. 203 (2015) 35. https://doi.org/10.1016/j.ssc.2014.11.017
  234. S. Hu, L. Ma, Y. Xie, F. Li, Z. Fan, F. Wang, Q. Wang, Y. Wang, X. Kang, G. Wu, Dalton Trans. 44 (2015) 20889. https://doi.org/10.1039/C5DT04035C
  235. Q. Han, C. Hu, F. Zhao, Z. Zhang, N. Chen, L. Qu, J. Mater. Chem. A 3 (2015) 4612. https://doi.org/10.1039/C4TA06093H
  236. H. Wang, X. Zhang, J. Xie, J. Zhang, P. Ma, B. Pan, Y. Xie, Nanoscale 7 (2015) 5152. https://doi.org/10.1039/C4NR07645A
  237. Y.C. Lu, J. Chen, A.J. Wang, N. Bao, J.J. Feng,W. Wang, L.J. Shao, Mater. Chem. C 3 (2015) 73. https://doi.org/10.1039/C4TC02111H
  238. H. Ma, Y. Li, S. Li, N. Liu, Appl. Surf. Sci. 357 (2015) 131 (Part A). https://doi.org/10.1016/j.apsusc.2015.09.009
  239. J. Li, B. Shen, Z. Hong, B. Lin, B. Gao, Y. Chen, Chem. Commun. 48 (2012) 12017. https://doi.org/10.1039/c2cc35862j
  240. Z.F. Huang, J. Song, L. Pan, Z. Wang, X. Zhang, J.J. Zou, W. Mi, X. Zhang, L. Wang, Nano Energy 12 (2015) 646. https://doi.org/10.1016/j.nanoen.2015.01.043
  241. Z. Zhao, Y. Sun, F. Dong, Y. Zhang, H. Zhao, RSC Adv. 5 (2015) 39549. https://doi.org/10.1039/C5RA03433G
  242. Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, J. Shi, Carbon 99 (2016) 111. https://doi.org/10.1016/j.carbon.2015.12.008
  243. S. Hu, L. Ma, J. You, F. Li, Z. Fan, F. Wang, D. Liu, J. Gui, RSC Adv. 4 (2014) 21657. https://doi.org/10.1039/C4RA02284J
  244. Y. Zhou, L. Zhang, J. Liu, X. Fan, B. Wang, M. Wang, W. Ren, J. Wang, M. Li, J. Shi, J. Mater. Chem. A 3 (2015) 3862. https://doi.org/10.1039/C4TA05292G
  245. Y.P. Zhu, T.Z. Ren, Z.Y. Yuan, ACS Appl. Mater. Interfaces 7 (2015) 16850. https://doi.org/10.1021/acsami.5b04947
  246. S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian, Q. Pan, H. Fu, Angew. Chem. Int. Ed. 55 (2016) 1830. https://doi.org/10.1002/anie.201508505
  247. J. Ran, T.Y. Ma, G. Gao, X.W. Du, S.Z. Qiao, RSC: Energy Environ. Sci. 8 (2015) 3708. https://doi.org/10.1039/C5EE02650D
  248. G. Liu, P. Niu, C. Sun, S.C. Smith, Z. Chen, G.Q. Lu, H.M. Cheng, J. Am. Chem. Soc 132 (2010) 11642. https://doi.org/10.1021/ja103798k
  249. J. Zhang, J. Sun, K. Maeda, K. Domen, P. Liu, M. Antonietti, X. Fu, X. Wang, Energy Environ. Sci. 4 (2011) 675. https://doi.org/10.1039/C0EE00418A
  250. L.L. Feng, Y. Zou, C. Li, S. Gao, L.J. Zhou, Q. Sun, M. Fan, H. Wang, D. Wang, G.D. Li, Int. J. Hydrogen Energy 39 (2014) 15373. https://doi.org/10.1016/j.ijhydene.2014.07.160
  251. L. Ge, C. Han, X. Xiao, L. Guo, Y. Li, Mater. Res. Bull. 48 (2013) 3919. https://doi.org/10.1016/j.materresbull.2013.06.002
  252. J. Hong, X. Xia, Y. Wang, R.J. Xu, Mater. Chem. 22 (2012) 15006. https://doi.org/10.1039/c2jm32053c
  253. S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 26 (2010) 3894. https://doi.org/10.1021/la904023j
  254. Y. Wang, H. Li, J. Yao, X. Wang, M. Antonietti, Chem. Sci. 2 (2011) 446. https://doi.org/10.1039/C0SC00475H
  255. Lin, X. Wang, Angew. Chem. Int. Ed. 52 (2013) 1735. https://doi.org/10.1002/anie.201209017
  256. M. Jourshabani, Z. Shariatinia, A. Badiei, Langmuir 33 (2017) 7062. https://doi.org/10.1021/acs.langmuir.7b01767
  257. G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, X. Wang, Adv. Mater. 26 (2014) 805. https://doi.org/10.1002/adma.201303611
  258. Z. Liu, C. Zhao, S. Wang, R. Guo, Y. Wang, J. Han, Acta Petrolei Sinica 34 (2) (2018) 365.
  259. Y. Wang, Y. Di, M. Antonietti, H. Li, X. Chen, X. Wang, Solids Chem. Mater. 22 (2010) 5119. https://doi.org/10.1021/cm1019102
  260. S. Zhu, S. Liang, Q. Gu, L. Xie, J. Wang, Z. Ding, P. Liu, Appl. Catal. B 119-120 (2012) 146. https://doi.org/10.1016/j.apcatb.2012.02.020
  261. C. Tan, X. Huang, H. Zhang, Mater. Today 16 (2013) 29. https://doi.org/10.1016/j.mattod.2013.01.021
  262. C.R. Crowell, S.M. Sze, Solid State Electron. 9 (1966) 1035. https://doi.org/10.1016/0038-1101(66)90127-4
  263. Y. Yang, W. Guo, Y. Guo, Y. Zhao, X. Yuan, Y. Guo, J. Hazard. Mater. 271 (2014) 150. https://doi.org/10.1016/j.jhazmat.2014.02.023
  264. J.S. Jang, H.G. Kim, J.S. Lee, Catal. Today 185 (2012) 270. https://doi.org/10.1016/j.cattod.2011.07.008
  265. P.V. Kamat, J. Phys. Chem. Lett. 3 (5) (2012) 663. https://doi.org/10.1021/jz201629p
  266. N. Serpone, A.V. Emeline, J. Phys. Chem. Lett. 3 (2012) 673. https://doi.org/10.1021/jz300071j
  267. K.Y. Lee, R. Hahn, M. Altomare, E. Selli, P. Schmuki, Adv. Mater. 25 (2013) 6133. https://doi.org/10.1002/adma.201302581
  268. H. Chen, S. Chen, X. Quan, H.T. Yu, H.M. Zhao, Y.B. Zhang, J. Phys. Chem. C 112 (25) (2008) 9285. https://doi.org/10.1021/jp8011393
  269. Y. Shiraishi, Y. Kofuji, S. Kanazawa, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, Chem. Commun. 50 (2014) 15255. https://doi.org/10.1039/C4CC06960A
  270. K. Cheng, K. Zhu, S. Liu, M. Li, J. Huang, L. Yu, Z. Xia, C. Zhu, X. Liu, W. Li, W. Lu, F. Wei, Y. Zhou, W. Zheng, S. Mu, Appl. Mater. Interfaces (2018) (in press).
  271. K. Li, Z. Zeng, L. Yan, S. Luo, X. Luo, M. Huo, Y. Guo, Appl. Catal. B 165 (2015) 428. https://doi.org/10.1016/j.apcatb.2014.10.039
  272. K. Li, L. Yan, Z. Zeng, S. Luo, X. Luo, X. Liu, H. Guo, Y. Guo, Appl. Catal. B 156-157 (2014) 141. https://doi.org/10.1016/j.apcatb.2014.03.010
  273. J. Yu, K. Wang, W. Xiao, B. Cheng, Phys. Chem. Chem. Phys. 16 (2014) 11492. https://doi.org/10.1039/c4cp00133h
  274. W.J. Ong, L.L. Tan, S.P. Chai, S.T. Yong, Dalton Trans. 44 (2015) 1249. https://doi.org/10.1039/C4DT02940B
  275. C. Chang, Y. Fu, M. Hu, C. Wang, G. Shan, L. Zhu, Appl. Catal. B 142-143 (2013) 553. https://doi.org/10.1016/j.apcatb.2013.05.044
  276. Y. Di, X.C. Wang, A. Thomas, M. Antonietti, ChemCatChem 2 (2010) 834. https://doi.org/10.1002/cctc.201000057
  277. N. Cheng, J. Tian, Q. Liu, C. Ge, A.H. Qusti, A.M. Asiri, A.O. Al-Youbi, X. Sun, ACS Appl. Mater. Interfaces 5 (2013) 6815. https://doi.org/10.1021/am401802r
  278. T. Bhowmik, M.K. Kundu, S. Barman, RSC Adv. 5 (2015) 38760. https://doi.org/10.1039/C5RA04913J
  279. J. Xue, S. Ma, Y. Zhou, Q. Wang, RSC Adv. 5 (2015) 88249. https://doi.org/10.1039/C5RA17719G
  280. Y. Guo, L. Zhang, K. Zhou, Y. Shen, Q. Zhang, C. Gu, J. Mater. Chem. A 2 (2014) 19594. https://doi.org/10.1039/C4TA04400B
  281. J. Liu, Y. Yang, N. Liu, Y. Liu, H. Huang, Z. Kang, Green Chem. 16 (2014) 4559. https://doi.org/10.1039/C4GC01126K
  282. H.Y. Zhu, X. Chen, Z.F. Zheng, X.B. Ke, E. Jaatinen, J.C. Zhao, C. Guo, T.F. Xie, D.J. Wang, Chem. Commun. 45 (2009) 7524.
  283. N.Y. Cheng, J.Q. Tian, Q. Liu, C.J. Ge, A.H. Qusti, A.M. Asiri, A.O. Al-Youbi, X.P. Sun, ACS Appl. Mater. Interfaces 5 (2013) 6815. https://doi.org/10.1021/am401802r
  284. S. Tonda, S. Kumar, V. Shanker, Mater. Res. Bull. 75 (2016) 51. https://doi.org/10.1016/j.materresbull.2015.11.011
  285. S. Samanta, S. Martha, K. Parida, ChemCatChem 6 (2014) 1453.
  286. Y.X. Yang, Y.N. Guo, F.Y. Liu, X. Yuan, Y.H. Guo, S.Q. Zhang, W. Guo, M.X. Huo, Appl. Catal. B 142-143 (2013) 828. https://doi.org/10.1016/j.apcatb.2013.06.026
  287. M. Faisal, A.A. Ismail, F.A. Harraz, S.A. Al-Sayari, A.M. El-Toni, M.S. Al-Assiri, Mater. Design 98 (2016) 223. https://doi.org/10.1016/j.matdes.2016.03.019
  288. Y. Bu, Z. Chen, W. Li, Appl. Catal. B 144 (2014) 622. https://doi.org/10.1016/j.apcatb.2013.07.066
  289. H. Li, Y. Jing, X. Ma, T. Liu, L. Yang, B. Liu, S. Yin, Y. Wei, Y. Wang, RSC Adv. 7 (2017) 8688. https://doi.org/10.1039/C6RA26498K
  290. X. Wang, R. Long, D. Liu, D. Yang, C. Wang, Y. Xiong, Nano Energy 24 (2016) 87. https://doi.org/10.1016/j.nanoen.2016.04.013
  291. J. Chen, C.L. Dong, Y. Du, D. Zhao, S. Shen, Adv. Mater. Interfaces 2 (2015) 15002.
  292. X.J. Bai, R.L. Zong, C.X. Li, D. Liu, Y.F. Liu, Y.F. Zhu, Appl. Catal. B 147 (2014) 82. https://doi.org/10.1016/j.apcatb.2013.08.007
  293. X.H. Li, X.C. Wang, M. Antonietti, Chem. Sci. 3 (2012) 2170. https://doi.org/10.1039/c2sc20289a
  294. D.B. Ingram, P. Christopher, J.L. Bauer, S. Linic, ACS Catal. 1 (2011) 1441. https://doi.org/10.1021/cs200320h
  295. S.W. Cao, Z. Yin, J. Barber, F.Y.C. Boey, S.C.J. Loo, C. Xue, ACS Appl. Mater. Interfaces 4 (2011) 418.
  296. A. Ault, J. Chem. Educ. 79 (2002) 572. https://doi.org/10.1021/ed079p572
  297. C.P. Casey, J. Chem. Educ. 83 (2006) 192. https://doi.org/10.1021/ed083p192
  298. J.C.C. Seechurn, M.O. Kitching, T.J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 51 (2012) 5062. https://doi.org/10.1002/anie.201107017
  299. F. Chang, J. Zhang, Y. Xie, J. Chen, C. Li, J. Wang, J. Luo, B. Deng, X. Hu, Appl. Surf. Sci. 311 (2014) 574. https://doi.org/10.1016/j.apsusc.2014.05.111
  300. H. Zhu, D. Chen, D. Yue, Z. Wang, H. Ding, J. Nanoparticle Res.16 (2632) (2014) 4.
  301. N. Boonprakob, N. Wetchakun, S. Phanichphant, D. Waxler, P. Sherrell, A. Nattestad, J. Chen, B. Inceesungvorn, J. Colloid Interface Sci 417 (2014) 402. https://doi.org/10.1016/j.jcis.2013.11.072
  302. Y. Li, J. Wang, Y. Yang, Y. Zhang, D. He, Q. An, G. Cao, J. Hazard. Mater 292 (2015) 79. https://doi.org/10.1016/j.jhazmat.2015.03.006
  303. S. Ma, J. Xue, Y. Zhou, Z. Zhang, Z. Cai, D. Zhu, S. Liang, RSC Adv. 5 (2015) 64976. https://doi.org/10.1039/C5RA10447E
  304. K. Li, S. Gao, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, J. Lu, ACS Appl. Mater. Interfaces 7 (2015) 9023. https://doi.org/10.1021/am508505n
  305. J. Zhou, M. Zhang, Y. Zhu, Phys. Chem. Chem. Phys. 17 (2015) 3647. https://doi.org/10.1039/C4CP05173D
  306. D. Lu, G. Zhang, Z. Wan, Appl. Surf. Sci. 358 (2015) 223 (Part A). https://doi.org/10.1016/j.apsusc.2015.08.240
  307. L. Gu, J. Wang, Z. Zou, X. Han, J. Hazard. Mater. 268 (2014) 216. https://doi.org/10.1016/j.jhazmat.2014.01.021
  308. W. Li, C. Li, B. Chen, X. Jiao, D. Chen, RSC Adv. 5 (2015) 34281. https://doi.org/10.1039/C5RA04100G
  309. X. Wang, W. Yang, F. Li, Y. Xue, R. Liu, Y. Hao, Ind. Eng. Chem. Res. 52 (2013) 17140. https://doi.org/10.1021/ie402820v
  310. S. Sun, M. Sun, Y. Fang, Y. Wang, H. Wang, RSC Adv. 6 (2016) 13063. https://doi.org/10.1039/C5RA26700E
  311. S. Kumar, S. Tonda, A. Baruah, B. Kumar, V. Shanker, Dalton Trans. 43 (2014) 16105. https://doi.org/10.1039/C4DT01076K
  312. Q. Liu, C. Fan, H. Tang, X. Sun, J. Yang, X. Cheng, Appl. Surf. Sci. 358 (2015) 188 (Part A). https://doi.org/10.1016/j.apsusc.2015.09.010
  313. S. Kumar, B. Kumar, T. Surendar, V. Shanker, Mater. Res Bull. 49 (2014) 310. https://doi.org/10.1016/j.materresbull.2013.09.013
  314. Z. Yong, J. Ren, H. Hu, P. Li, S. Ouyang, H. Xu, D. Wang, J. Nanomater. 2015 (2015) e821986.
  315. W. Peng, X. Li, Catal. Commun. 49 (2014) 63. https://doi.org/10.1016/j.catcom.2014.02.008
  316. Q. Li, N. Zhang, Y. Yang, G. Wang, D.H.L. Ng, Langmuir 30 (2014) 8965. https://doi.org/10.1021/la502033t
  317. H. Li, J. Liu, W. Hou, N. Du, R. Zhang, X. Tao, Appl. Catal. B: Environ. 160-161 (2014) 89. https://doi.org/10.1016/j.apcatb.2014.05.019
  318. Y. Tian, F. Cheng, X. Zhang, F. Yan, B. Zhou, Z. Chen, J. Liu, F. Xi, X. Dong, Powder Technol. 267 (2014) 126. https://doi.org/10.1016/j.powtec.2014.07.021
  319. S.W. Hu, L.W. Yang, Y. Tian, X.L. Wei, J.W. Ding, J.X. Zhong, P.K. Chu, J. Colloid Interface Sci. 431 (2014) 42. https://doi.org/10.1016/j.jcis.2014.05.023
  320. L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu, G. Cai, Dalton Trans. 42 (2013) 8606. https://doi.org/10.1039/c3dt00115f
  321. K. Katsumata, R. Motoyoshi, N. Matsushita, K. Okada, J. Hazard. Mater. 260 (2013) 475. https://doi.org/10.1016/j.jhazmat.2013.05.058
  322. S. Chen, Y. Hu, X. Jiang, S. Meng, X. Fu, Mater. Chem. Phys.149-150 (2015) 512. https://doi.org/10.1016/j.matchemphys.2014.11.001
  323. Y. Wang, Z. Wang, S. Muhammad, J. He, Cryst. Eng. Comm. 14 (2012) 5065. https://doi.org/10.1039/c2ce25517k
  324. S. Zhan, F. Zhou, N. Huang, Y. Yang, Y. Liu, Y. Yin, Y. Fang, Appl. Surf. Sci. 358 (2015) 328 (Part A). https://doi.org/10.1016/j.apsusc.2015.07.180
  325. N. Tian, H. Huang, Y. Zhang, Appl. Surf. Sci. 358 (2015) 343 (Part A). https://doi.org/10.1016/j.apsusc.2015.07.154
  326. K. Vignesh, A. Suganthi, B.K. Min, M. Kang, J. Mol. Catal. A: Chem. 395 (2014) 373. https://doi.org/10.1016/j.molcata.2014.08.040
  327. Z. Zhu, Z. Lu, X. Zhao, Y. Yan, W. Shi, D. Wang, L. Yang, X. Lin, Z. Hua, Y. Liu, RSC Adv. 5 (2015) 40726. https://doi.org/10.1039/C5RA06209H
  328. Q. Liu, Y. Guo, Z. Chen, Z. Zhang, X. Fang, Appl. Catal. B: Environ. 183 (2016) 231. https://doi.org/10.1016/j.apcatb.2015.10.054
  329. Y. Yao, F. Lu, Y. Zhu, F. Wei, X. Liu, C. Lian, S. Wang, J. Hazard. Mater. 297 (2015) 224. https://doi.org/10.1016/j.jhazmat.2015.04.046
  330. S. Zhang, J. Li, M. Zeng, G. Zhao, J. Xu, W. Hu, X. Wang, ACS Appl. Mater. Interfaces 5 (2013) 12735. https://doi.org/10.1021/am404123z
  331. D. Chen, K. Wang, T. Ren, H. Ding, Y. Zhu, Dalton Trans. 43 (2014) 13105. https://doi.org/10.1039/C4DT01347F
  332. K. Vignesh, S. Kang, B.S. Kwak, M. Kang, Sep. Purif. Technol. 147 (2015) 257. https://doi.org/10.1016/j.seppur.2015.04.043
  333. L. Zhang, X. Wang, Q. Nong, H. Lin, B. Teng, Y. Zhang, L. Zhao, T. Wu, Y. He, Appl. Surf. Sci. 329 (2015) 143. https://doi.org/10.1016/j.apsusc.2014.12.154
  334. W.K. Jo, N.C.S. Selvam, J. Hazard Mater. 299 (2015) 462. https://doi.org/10.1016/j.jhazmat.2015.07.042
  335. J. Fu, B. Chang, Y. Tian, F. Xi, X. Dong, J. Mater. Chem. A 1 (2013) 3083. https://doi.org/10.1039/c2ta00672c
  336. X. Cui, Y.F. Zheng, H.Y. Yin, X.C. Song, Phys. Chem. Chem. Phys. 17 (2015) 29354. https://doi.org/10.1039/C5CP05464H
  337. W. Tian, N. Li, J. Zhou, Appl. Surf. Sci. 361 (2016) 251. https://doi.org/10.1016/j.apsusc.2015.11.157
  338. R.C. Pawar, V. Khare, C.S. Lee, Dalton Trans. 43 (2014) 12514. https://doi.org/10.1039/C4DT01278J
  339. L. Ge, C. Han, J. Liu, Appl. Catal. B: Environ. 108-109 (2011) 100. https://doi.org/10.1016/j.apcatb.2011.08.014
  340. L. Liu, Y. Qi, J. Lu, S. Lin, W. An, J. Hu, Y. Liang, W. Cui, RSC Adv. 5 (2015) 99339. https://doi.org/10.1039/C5RA19929H
  341. C. Pan, J. Xu, Y. Wang, D. Li, Y. Zhu, Adv. Funct. Mater. 22 (2012) 1518. https://doi.org/10.1002/adfm.201102306
  342. S. Obregon, Y. Zhang, G. Colon, Appl. Catal. B: Environ. 184 (2016) 96. https://doi.org/10.1016/j.apcatb.2015.11.027
  343. Z. Yang, J. Li, F. Cheng, Z. Chen, X. Dong, J. Alloys Compd. 634 (2015) 215. https://doi.org/10.1016/j.jallcom.2015.02.103
  344. J. Xia, M. Ji, J. Di, B. Wang, S. Yin, Q. Zhang, M. He, H. Li, Appl. Catal. B: Environ. 191 (2016) 235. https://doi.org/10.1016/j.apcatb.2016.02.058
  345. D. Yuan, L. Huang, Y. Li, Y. Xu, H. Xu, S. Huang, J. Yan, M. He, H. Li, RSC Adv. 6 (2016) 41204. https://doi.org/10.1039/C6RA05565F
  346. Y.J. Sun, W.D. Zhang, T. Xiong, Z.W. Zhao, F. Dong, R.Q. Wang, W.K. Ho, J. Colloid. Interface Sci. 418 (2014) 317. https://doi.org/10.1016/j.jcis.2013.12.037
  347. F. Li, Y. Zhao, Q. Wang, X. Wang, Y. Hao, R. Liu, D. Zhao, J. Hazard. Mater. 283 (2015) 371. https://doi.org/10.1016/j.jhazmat.2014.09.035
  348. C. Xing, Z. Wu, D. Jiang, M. Chen, J. Colloid Interface Sci. 433 (2014) 9. https://doi.org/10.1016/j.jcis.2014.07.015
  349. A. Akhundi, A. Habibi-Yangjeh, Mater. Express 5 (2015) 309. https://doi.org/10.1166/mex.2015.1242
  350. X. Chen, B. Zhou, S. Yang, H. Wu, Y. Wu, L. Wu, J. Pan, X. Xiong, RSC Adv. 5 (2015) 68953. https://doi.org/10.1039/C5RA11801H
  351. Y. Liu, P. Chen, Y. Chen, H. Lu, J. Wang, Z. Yang, Z. Lu, M. Lia, L. Fang, RSC Adv. 6 (2016) 10802. https://doi.org/10.1039/C5RA21506D
  352. L. Li, Y.W. Yang, X.H. Huang, G.H. Li, R.L. Ang, D. Zhang, Appl. Phys. Lett. 88 (2006) 103119. https://doi.org/10.1063/1.2184990
  353. K. Liu, C.L. Chien, P.C. Searson, Phys. Rev. B 58 (1998) 14681. https://doi.org/10.1103/PhysRevB.58.R14681
  354. F. Qin, R.M. Wang, G.F. Li, F. Tian, H.P. Zhao, R. Chen, Catal. Commun. 42 (2013) 14. https://doi.org/10.1016/j.catcom.2013.07.039
  355. F. Dong, Z. Zhao, Y. Sun, Y. Zhang, S. Yan, Z. Wu, ACS-Environ. Sci. Technol. 49 (20) (2015) 12432. https://doi.org/10.1021/acs.est.5b03758
  356. X. Wang, S. Wang, W. Hu, J. Cai, L. Zhang, L. Dong, L. Zhao, Y. He, Mater. Lett. 115 (2014) 53. https://doi.org/10.1016/j.matlet.2013.10.016
  357. B. Lin, C. Xue, X. Yan, G. Yang, G. Yang, B. Yang, Appl. Surf. Sci. 357 (2015) 346 (Part A). https://doi.org/10.1016/j.apsusc.2015.09.041
  358. C.Wen,H.Zhang,Q.Bo, T.Huang,Z.Lu, J.Lv,Y.Wang,Chem.Eng. J.270(2015)405. https://doi.org/10.1016/j.cej.2015.01.082
  359. H. Wang, X. Yuan, H. Wang, X. Chen, Z. Wu, L. Jiang, W. Xiong, G. Zeng, Appl. Catal. B: Environ. 193 (2016) 36. https://doi.org/10.1016/j.apcatb.2016.03.075
  360. H. Kato, K. Asakura, A. Kudo, J. Am. Chem. Soc. 125 (2003) 3082. https://doi.org/10.1021/ja027751g
  361. S.Q. Peng, Y.H. Huang, Y.X. Li, Mater. Sci. Semicond. Process 16 (2013) 62. https://doi.org/10.1016/j.mssp.2012.06.019
  362. Z.X. Li, F.B. Shi, T. Zhang, H.S. Wu, L.D. Sun, C.H. Yan, Chem. Commun. 47 (2011) 8109. https://doi.org/10.1039/c1cc12539g
  363. W.F. Yao, C.P. Huang, J.H. Ye, Chem. Mater. 22 (2010) 1107. https://doi.org/10.1021/cm902137s
  364. A. Nashim, K.M. Parida, Chem. Eng. J. 215-216 (2013) 608. https://doi.org/10.1016/j.cej.2012.11.025
  365. J. Luo, X. Zhou, L. Ma, X. Xu, RSC Adv. 5 (2015) 68728. https://doi.org/10.1039/C5RA10848A
  366. L. Wang, J. Ding, Y. Chai, Q. Liu, J. Ren, X. Liu, W.L. Dai, Dalton Trans. 44 (2015) 11223. https://doi.org/10.1039/C5DT01479D
  367. X. She, H. Xu, H. Wang, J. Xia, Y. Song, J. Yan, Y. Xu, Q. Zhang, D. Du, H. Li, Dalton Trans. 44 (2015) 7021. https://doi.org/10.1039/C4DT03793F
  368. Y. He, J. Cai, T. Li, Y. Wu, Y. Yi, M. Luo, L. Zhao, Ind. Eng. Chem. Res. 51 (2012) 14729. https://doi.org/10.1021/ie301774e
  369. T. Li, L. Zhao, Y. He, J. Cai, M. Luo, J. Lin, Appl. Catal. B: Environ.129 (2013) 255. https://doi.org/10.1016/j.apcatb.2012.09.031
  370. Y. He, J. Cai, L. Zhang, X. Wang, H. Lin, B. Teng, L. Zhao, W. Weng, H. Wan, M. Fan, Ind. Eng. Chem. Res. 53 (2014) 5905. https://doi.org/10.1021/ie4043856
  371. Y. He, J. Cai, T. Li, Y. Wu, H. Lin, L. Zhao, M. Luo, Chem. Eng. J. 215-216 (2013) 721. https://doi.org/10.1016/j.cej.2012.11.074

Cited by

  1. A Metal-Free Carbon-Based Catalyst: An Overview and Directions for Future Research vol.4, pp.4, 2018, https://doi.org/10.3390/c4040054
  2. Carbon-Based Nanomaterials via Heterojunction Serving as Photocatalyst vol.7, pp.None, 2018, https://doi.org/10.3389/fchem.2019.00713
  3. One-pot construction of Cu and O co-doped porous g-C3N4 with enhanced photocatalytic performance towards the degradation of levofloxacin vol.9, pp.36, 2018, https://doi.org/10.1039/c9ra02411e
  4. Photocatalytic performance and quick recovery of BiOI/Fe3O4@graphene oxide ternary photocatalyst for photodegradation of 2,4-dintirophenol under visible light vol.12, pp.None, 2019, https://doi.org/10.1016/j.mtchem.2018.12.006
  5. Synthesis of Graphitic Carbon Nitride in Porous Silica Glass vol.18, pp.3, 2019, https://doi.org/10.1142/s0219581x19400428
  6. Titanium Dioxide Nanomaterials and its Derivatives in the Remediation of Water: Past, Present and Future vol.30, pp.3, 2019, https://doi.org/10.14478/ace.2019.1035
  7. Ammelinium Sulfate Monohydrate and Ammelinium Sulfate Cyanuric Acid – Synthesis and Structural Characterization vol.645, pp.12, 2018, https://doi.org/10.1002/zaac.201900042
  8. From Heptazines to Triazines – On the Formation of Poly(triazine imide) vol.645, pp.12, 2018, https://doi.org/10.1002/zaac.201900043
  9. Melamium Thiocyanate Melam, a Melamium Salt with Disordered Anion Sites vol.645, pp.12, 2018, https://doi.org/10.1002/zaac.201900054
  10. Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light vol.12, pp.7, 2019, https://doi.org/10.1039/c9ee00717b
  11. Hydrothermal Synthesis of g‐C3N4/NiFe2O4 Nanocomposite and Its Enhanced Photocatalytic Activity vol.33, pp.8, 2018, https://doi.org/10.1002/aoc.5002
  12. One-step synthesis of Ag6Si2O7/AgCl heterojunction composite with extraordinary visible-light photocatalytic activity and stability vol.46, pp.1, 2020, https://doi.org/10.1007/s11164-019-03933-x
  13. Simple synthesis of 3D flower-like g-C3N4/TiO2 composite microspheres for enhanced visible-light photocatalytic activity vol.55, pp.1, 2018, https://doi.org/10.1007/s10853-019-03953-3
  14. Graphitic carbon nitride (g-C3N4) as an efficient metal-free Fenton-like catalyst for degrading organic pollutants: the overlooked non-photocatalytic activity vol.81, pp.3, 2020, https://doi.org/10.2166/wst.2020.129
  15. Interfacial charge modulation: carbon quantum dot implanted carbon nitride double-deck nanoframes for robust visible-light photocatalytic tetracycline degradation vol.12, pp.5, 2018, https://doi.org/10.1039/c9nr09945j
  16. Mesoporous Graphitic Carbon Nitride/Black Phosphorus/AgPd Alloy Nanoparticles Ternary Nanocomposite: A Highly Efficient Catalyst for the Methanolysis of Ammonia Borane vol.12, pp.7, 2018, https://doi.org/10.1021/acsami.9b18917
  17. Investigation of photocatalytic chlorpyrifos degradation by a new silica mesoporous material immobilized by WS2 and Fe3O4 nanoparticles: Application of response surfac vol.34, pp.3, 2018, https://doi.org/10.1002/aoc.5343
  18. Recovery Behavior of the Luminescence Peak from Graphitic Carbon Nitride as a Function of the Synthesis Temperature vol.55, pp.3, 2018, https://doi.org/10.1002/crat.201900163
  19. Hydrothermal synthesis and photo-Fenton degradation of magnetic MnFe2O4/rGO nanocomposites vol.31, pp.7, 2018, https://doi.org/10.1007/s10854-020-03077-4
  20. Noble metal deposited graphitic carbon nitride based heterojunction photocatalysts vol.508, pp.None, 2018, https://doi.org/10.1016/j.apsusc.2019.145142
  21. Structurally modified graphitic carbon nitride with highly photocatalytic activity in the presence of visible light vol.352, pp.None, 2018, https://doi.org/10.1016/j.cattod.2019.12.007
  22. Solar light harvest: modified d-block metals in photocatalysis vol.10, pp.16, 2018, https://doi.org/10.1039/c9cy02435b
  23. Anionic/cationic synergistic action of insulator BaCO3 enhanced the photocatalytic activities of graphitic carbon nitride vol.528, pp.None, 2018, https://doi.org/10.1016/j.apsusc.2020.146924
  24. Photocatalytic Properties of g-C3N4-Supported on the SrAl2O4:Eu,Dy/SiO2 vol.10, pp.10, 2020, https://doi.org/10.3390/coatings10100917
  25. Graphitic Carbon Nitride: A Highly Electroactive Nanomaterial for Environmental and Clinical Sensing vol.20, pp.20, 2020, https://doi.org/10.3390/s20205743
  26. g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: A review vol.276, pp.None, 2018, https://doi.org/10.1016/j.jclepro.2020.124319
  27. Graphitic Carbon Nitride-Based Composite in Advanced Oxidation Processes for Aqueous Organic Pollutants Removal: A Review vol.9, pp.1, 2021, https://doi.org/10.3390/pr9010066
  28. Optimization of N doping in TiO2 nanotubes for the enhanced solar light mediated photocatalytic H2 production and dye degradation vol.269, pp.None, 2021, https://doi.org/10.1016/j.envpol.2020.116170
  29. Synthesis of Graphitic Carbon Nitride on the Surface of Fe3O4 Nanoparticles vol.57, pp.2, 2018, https://doi.org/10.1134/s0020168521020059
  30. Prediction of Band Gap Energy of Doped Graphitic Carbon Nitride Using Genetic Algorithm-Based Support Vector Regression and Extreme Learning Machine vol.13, pp.3, 2018, https://doi.org/10.3390/sym13030411
  31. Advanced Two-Dimensional Heterojunction Photocatalysts of Stoichiometric and Non-Stoichiometric Bismuth Oxyhalides with Graphitic Carbon Nitride for Sustainable Energy and Environmental Applications vol.11, pp.4, 2021, https://doi.org/10.3390/catal11040426
  32. Highly Enhanced Visible‐light Photocatalytic Activity via a Novel Surface Structure of CeO 2 /g−C 3 N 4 toward Removal of 2,4‐dichlorophenol and C vol.13, pp.8, 2018, https://doi.org/10.1002/cctc.202001939
  33. g-C3N4 Sensitized by an Indoline Dye for Photocatalytic H2 Evolution vol.9, pp.6, 2018, https://doi.org/10.3390/pr9061055
  34. Oxygen functionalized g-C3N4 strengthen Fe(III)/H2O2 system by accelerating Fe(III)/Fe(II) cycles under natural solar light: A mutual-promoting configuratio vol.778, pp.None, 2018, https://doi.org/10.1016/j.scitotenv.2021.146280
  35. Synergistically homogeneous-heterogeneous Fenton catalysis of trace copper ion and g-C3N4 for degradation of organic pollutants vol.84, pp.5, 2018, https://doi.org/10.2166/wst.2021.296
  36. Preparation of an Excellent Z‐type SrWO 4 @Bi 2 WO 6 Heterojunction Photocatalyst and Its Photocatalytic Performance under Simulated Sunlight vol.6, pp.34, 2018, https://doi.org/10.1002/slct.202102213
  37. ZnS-based quantum dots as photocatalysts for water purification vol.43, pp.None, 2021, https://doi.org/10.1016/j.jwpe.2021.102217
  38. A review on graphitic carbon nitride (g-C3N4) based hybrid membranes for water and wastewater treatment vol.792, pp.None, 2021, https://doi.org/10.1016/j.scitotenv.2021.148462
  39. Recent Progress in Quantum Dots Modified g‐C 3 N 4 ‐based Composite Photocatalysts vol.6, pp.40, 2018, https://doi.org/10.1002/slct.202102952
  40. Research progress on g-C3N4-based photocatalysts for organic pollutants degradation in wastewater: From exciton and carrier perspectives vol.47, pp.22, 2018, https://doi.org/10.1016/j.ceramint.2021.08.063
  41. Photochemical Solid-Phase In Situ Anchoring of Single Atoms Ag/g-C 3 N 4 for Enhanced Photocatalytic Activity vol.38, pp.11, 2018, https://doi.org/10.1089/ees.2020.0213
  42. Recent advances in structural tailoring of BiOX-based 2D composites for solar energy harvesting vol.9, pp.6, 2018, https://doi.org/10.1016/j.jece.2021.106569
  43. An efficient B/Na co-doped porous g-C3N4 nanosheets photocatalyst with enhanced photocatalytic hydrogen evolution and degradation of tetracycline under visible light vol.576, pp.no.pa, 2018, https://doi.org/10.1016/j.apsusc.2021.151837
  44. Enhanced structural, optical, and photocatalytic activities of Cd-Co doped Zn ferrites for degrading methyl orange dye under irradiation by visible light vol.161, pp.None, 2018, https://doi.org/10.1016/j.jpcs.2021.110419
  45. G-C3N4/Ag@CoWO4: A novel sunlight active ternary nanocomposite for potential photocatalytic degradation of rhodamine B dye vol.161, pp.None, 2018, https://doi.org/10.1016/j.jpcs.2021.110437
  46. Heterostructures obtained by ultrasonic methods for photocatalytic application: A review vol.139, pp.None, 2018, https://doi.org/10.1016/j.mssp.2021.106311