• Title/Summary/Keyword: Photocatalytic

Search Result 1,096, Processing Time 0.027 seconds

Preparation and Photocatalyric Properties of Organic-Inorganic Hybrid Abaca Cellulose@Titanium Dioxide Composite (유-무기 하이브리드 형 Abaca 셀룰로오스/이산화 티타늄 복합체의 제조 및 이의 광촉매적 특성)

  • Su-A, Kang;Young-Ho, Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.57-63
    • /
    • 2023
  • In this study, an organic-inorganic hybrid composite of Abaca nanocellulose and titanium dioxide was prepared. Abaca nanocellulose was prepared by oxidizing Abaca cellulose using TEMPO (2,2,6,6-tetramethyl-piperidine-1-oxyl) as a catalyst. Titanium dioxide nanoparticles were prepared by the sol-gel method, and a composite was prepared by hybridizing them with nanocellulose. As a result of comparing the properties of the composite and its physical properties according to the change in manufacturing pH, the effect of pH was very large when combining nanocellulose and titanium dioxide, and the optimal bonding performance was shown at pH 8 in this experimental condition. In addition, the prepared composite showed photocatalytic properties, and the higher the content of titanium dioxide, the higher the hydrophilicity of the composite according to UV light irradiation.

Experiment on Reduction of Pollutants in Titanium Dioxide Photocatalytic Ventilation System (이산화티탄 광촉매 환기장치의 오염물질 저감 실험)

  • Song, Yong Woo
    • Land and Housing Review
    • /
    • v.13 no.2
    • /
    • pp.117-123
    • /
    • 2022
  • In this study, titanium dioxide photocatalyst was applied to the ventilation system to reduce particulate matter and nitrogen oxides (NOx), which are representative indoor harmful substances. A reaction device capable of installing an ultraviolet lamp was designed and manufactured so that the pollutant decomposition effect of the titanium dioxide photocatalyst identified through previous studies could be applied indoors. The reaction device was used on the indoor ventilation system and applied to the Mock-Up test. As a result of the Mock-up test, the NOx reduction performance according to the change in air volume once per hour and five times per hour was confirmed. As a result, it was confirmed that as the number of ventilation increases, the NOx reduction time decreases proportionally, and the reduction performance increases.

Preparation and Characterization of N-doped Na2Ti6O13@TiO2 Composites for Visible Light Activity (가시광 활성을 위한 N-doped Na2Ti6O13@TiO2 복합체 제조 및 특성 연구)

  • Duk-Hee, Lee;Kyung-Soo, Park
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.492-498
    • /
    • 2022
  • N-doped Na2Ti6O13@TiO2 (denoted as N-NTO@TiO2) composites are successfully synthesized using a simple two-step process: 1) ball-milling of TiO2 with Na2CO3 followed by heat treatment at 900℃; 2) mixing of the prepared Na2Ti6O13 with titanium isopropoxide and calcining with urea at 500℃. The prepared composites are characterized using XRD, SEM, TEM, FTIR, and BET. The N-NTO@TiO2 composites exhibit well-defined crystalline and anatase TiO2 with exposed {101} facets on the external surface. Moreover, dopant N atoms are uniformly distributed over a relatively large area in the lattice of the composites. Under visible light irradiation, ~51% of the aqueous methylene blue is photodegraded by N-NTO@TiO2 composites, which is higher than the values shown by other samples because of the coupling effects of the hybridization of NTO and TiO2, N-doping, and presence of anatase TiO2 with exposed {101} facets.

Toulene Removal over the Water-suspended Sn-Incorporated $TiO_2$ Photocatalyst Prepared by Solvothermal Method (Solvothermal 법에 의해 제조된 Sn-$TiO_2$ 나노 반도체 촉매 상에서의 수중 부유 톨루엔 광분해 반응)

  • Kim, Ji-Yeon;Kim, Ji-Eun;Kang, Mi-Sook
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.46-50
    • /
    • 2010
  • This study focuses on the removal of water-suspended toluene of a representative sick house compounds in a liquid photo-system using nanometer-sized Sn-incorporated $TiO_2$ which was synthesized by a solvothermal method. The characteristics of the synthesized Sn-$TiO_2$ were analyzed by X-ray Diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), and UV-visible spectroscopy (UV-Vis). To estimate the photocatalytic activity of Sn-$TiO_2$, the photodegradation of water-suspended toluene was performed, and the remaining concentration was determined using UV-visible spectroscopy. The water-suspended toluene photodegradation over Sn-incorporated $TiO_2$ catalyst was better than that over pure $TiO_2$ (anatase). The water-suspended toluene of 500 ppm was perfectly decomposed within 300 minutes over 0.01 mol% Sn-$TiO_2$.

Fabrication and Evaluation of a Total Organic Carbon Analyzer Using Photocatalysis

  • Do Yeon Lee;Jeong Hee Shin;Jong-Hoo Paik
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.140-146
    • /
    • 2023
  • Water quality is crucial for human health and the environment. Accurate measurement of the quantity of organic carbon in water is essential for water quality evaluation, identification of water pollution sources, and appropriate implementation of water treatment measures. Total organic carbon (TOC) analysis is an important tool for this purpose. Although other methods, such as chemical oxygen demand (COD) and biochemical oxygen demand (BOD) are also used to measure organic carbon in water, they have limitations that make TOC analysis a more favorable option in certain situations. For example, COD requires the use of toxic chemicals, and BOD is time-consuming and can produce inconsistent and unreliable results. In contrast, TOC analysis is rapid and reliable, providing accurate measurements of organic carbon content in water. However, common methods for TOC analysis can be complex and energy-intensive because of the use of high-temperature heaters for liquid-to-gas phase transitions and the use of acid, which present safety risks. This study focuses on a TOC analysis method using TiO2 photocatalysis, which has several advantages over conventional TOC analysis methods, including its low cost and easy maintenance. For TiO2, rutile and anatase powders are mixed with an inorganic binder and spray-coated onto a glass fiber substrate. The TiO2 powder and inorganic binder solutions are adjusted to optimize the photocatalytic reaction performance. The TiO2 photocatalysis method is a simple and low-power approach to TOC analysis, making it a promising alternative to commonly used TOC analysis methods. This study aims to contribute to the development of more efficient and cost-effective approaches for water quality analysis and management by exploring the effectiveness and reliability of the developed equipment.

Photoelectrochemical Hydrogen Production with Holmium-doped TiO2 (홀뮴 도핑된 TiO2를 이용한 광전기화학 수소 제조)

  • HYEONMIN JUNG;MINSEO KIM;HYEKYUNG CHO;HYUNKU JOO;KYOUNGSOO KANG;KWANGBOK YI;HANSUNG KIM;JAEKYUNG YOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.413-420
    • /
    • 2023
  • Holmium-doped TiO2 nanotubes (Ho-TNTs) were manufactured through anodization treatment and electrochemical deposition, and optimization experiments were conducted using various Holmium doping concentrations and time as variables. Surface as well as electrochemical characteristics were analyzed to study the prepared photocatalysts. Ho-TNTs were found to exist only in anatase phase through X-ray diffraction analysis. Ho-TNTs with 0.01 wt% 100 seconds shows a photocurrent density of 3.788 mA/cm2 and an effective photo-conversion efficiency (PCE) of 4.30%, which is more efficient than pure TiO2 nanotubes (pure-TNTs) (at bias potential 1.5 V vs. Hg/HgO). The photocatalytic activity of the aforementioned Ho-TNTs for hydrogen production was evaluated with the result of -29.20 µmol/h·cm2.

Carbon-Reduced Titanium Dioxide Production and Characterization Using Dyeing Wastewater Sludge (염색 폐수 슬러지를 활용한 탄소저감형 이산화티타늄 제조 및 특성 분석)

  • Jong Kyu Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.5
    • /
    • pp.254-260
    • /
    • 2024
  • This study is to manufacture a titanium dioxide (TiO2) photocatalyst by recycling sludge generated using titanium tetrachloride (TiCl4) as a coagulant. Compared to general sewage, a TiCl4 coagulant was applied to dyeing wastewater containing a large amount of non-degradable organic compounds to evaluate its performance. Then the generated sludge was dried and fired to prepare a photocatalyst (TFS). Scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), and nitrogen oxide reduction experiments were conducted to analyze the surface properties and evaluate the photoactive ability of the prepared TFS. After using titanium tetrachloride (TiCl4) as a coagulant in the dyeing wastewater, the water quality characteristics were measured at 84 mg/L of chemical oxygen demand (COD), 10 mg/L of T-N, and 0.9 mg/L of T-P to satisfy the discharge water quality standards. The surface properties of the TFS were investigated and the anatase crystal structure was observed. It was confirmed that the ratio of Ti and O, the main components of TiO2, accounted for more than 90 %. As a result of the nitric oxide (NO) reduction experiment, 1.56 uMol of NO was reduced to confirm a removal rate of 20.60 %. This is judged to be a photocatalytic performance similar to that of the existing P-25. Therefore, by applying TiCl4 to the dyeing wastewater, it is possible to solve the problems of the existing coagulant and to reduce the amount of carbon dioxide generated, using an eco-friendly sludge treatment method. In addition, it is believed that environmental and economic advantages can be obtained by manufacturing TiO2 at an eco-friendly and lower cost than before.

A Study on Characteristics of Lincomycin Degradation by Optimized TiO2/HAP/Ge Composite using Mixture Analysis (혼합물분석을 통해 최적화된 TiO2/HAP/Ge 촉매를 이용한 Lincomycin 제거특성 연구)

  • Kim, Dongwoo;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.63-68
    • /
    • 2014
  • In this study, it was found that determined the photocatalytic degradation of antibiotics (lincomycin, LM) with various catalyst composite of titanium dioxide ($TiO_2$), hydroxyapatite (HAP) and germanium (Ge) under UV-A irradiation. At first, various type of complex catalysts were investigated to compare the enhanced photocatalytic potential. It was observed that in order to obtain the removal efficiencies were $TiO_2/HAP/Ge$ > $TiO_2/Ge$ > $TiO_2/HAP$. The composition of $TiO_2/HAP/Ge$ using a statistical approach based on mixture analysis design, one of response surface method was investigated. The independent variables of $TiO_2$ ($X_1$), HAP ($X_2$) and Ge ($X_3$) which consisted of 6 condition in each variables was set up to determine the effects on LM ($Y_1$) and TOC ($Y_2$) degradation. Regression analysis on analysis of variance (ANOVA) showed significant p-value (p < 0.05) and high coefficients for determination value ($R^2$ of $Y_1=99.28%$ and $R^2$ of $Y_2=98.91%$). Contour plot and response curve showed that the effects of $TiO_2/HAP/Ge$ composition for LM degradation under UV-A irradiation. And the estimated optimal composition for TOC removal ($Y_2$) were $X_1=0.6913$, $X_2=0.2313$ and $X_3=0.0756$ by coded value. By comparison with actual applications, the experimental results were found to be in good agreement with the model's predictions, with mean results for LM and TOC removal of 99.2% and 49.3%, respectively.

Control of Chlorinated Volatile Pollutants at Indoor Air Levels Using Polymer-based Photocatalyst, Composite

  • Kim, Byeong-Chan;Kim, Hye-Jin;Kim, Ji-Eun;Park, Eun-Ju;Noh, Ji-Sun;Kang, Hyun-Jung;Shin, Seung-Ho;Jo, Wan-Kuen
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.105-112
    • /
    • 2013
  • In this study, polyaniline (PANI)-based $TiO_2$ (PANI-$TiO_2$) composites calcined at different temperatures were prepared and their applications for control of trichloroethylene (TCE) and tetrachloroethylene (TTCE) at indoor air levels were investigated. For these target compounds, the photocatalytic control efficiencies of PANI-$TiO_2$ composites did not exhibit any trend with varying calcination temperatures (CTs). Rather, the average control efficiencies of PANI-$TiO_2$ composites over 3-h photocatalytic process increased from 61 to 72% and from 21 to 39% for TCE and TTCE, respectively, as the CT increased from 350 to $450^{\circ}C$. However, for both the target compounds, the average control efficiencies of PANI-$TiO_2$ composites decreased gradually as the CT increased further to 550 and $650^{\circ}C$. These results were ascribed to contents of anatase crystal phase and specific surface area of different particle sizes in the PANI-$TiO_2$ composites, which were demonstrated by the X-ray diffraction and scanning electron microscopy images, respectively. At the lowest input concentration (IC, 0.1 ppm), average control efficiencies of TCE and TTCE were 72 and 39%, respectively, whereas at the highest IC (1.0 ppm) they were 52 and 18%, respectively. As stream flow rate increased from 0.1 to 1.0 L $min^{-1}$, the average control efficiencies of TCE and TTCE decreased from ca. 100 to 47% and ca. 100 to 18%, respectively. In addition, the average control efficiencies of TCE and TTCE decreased from ca. 100 to 23% and ca. 100 to 8%, respectively as the relative humidity increased from 20 to 95%. Overall, these findings indicated that as-prepared PANI-$TiO_2$ composites could be used efficiently for control of chlorinated compounds at indoor air levels;if operational conditions were optimized.

Development of Visible Light Responsive Nitrogen Doped Photocatalysts ($TiO_2$, $Nb_2O_5$) for hydrogen Evolution (수소 생산을 위한 가시광선 감응 질소 도핑 $TiO_2$$Nb_2O_5$ 광촉매의 개발)

  • Choi, Mi-Jin;Chae, Kyu-Jung;Yu, Hye-Weon;Kim, Kyoung-Yeol;Jang, Am;Kim, In-S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.907-912
    • /
    • 2011
  • Development of visible light responsive photocatalysts is a promising research area to facilitate utilization of solar energy for hydrogen production via photocatalytic water splitting. In this study two groups of samples, nitrogen (N)-doped niobium pentoxide ($Nb_2O_5$) and titanium dioxide ($TiO_2$) ($Nb_2O_5-N$, $HNb_3O_8-N$, $TiO_2-N$) and N-undoped ones ($Nb_2O_5$ and $TiO_2$) were tested. In order to utilize visible light, nitrogen atoms were doped in selected photocatalysts by using urea. A shift of the absorption edges of the Ndoped samples in the visible light region was observed. Under visible light irradiation, N-doped samples were more prominent photocatalytic activities than the N-undoped samples. Specifically, 99.7% of rhodamine B (RhB) was degraded after 60 minutes of visible light irradiation with $TiO_2-N$. Since $TiO_2-N$ shows the highest activity of RhB degradation, it was supposed to generate the highest current response. However, $HNb_3O_8-N$ showed the highest current response ($63.7mA/cm^2$) than $TiO_2-N$. More interestingly, when we compare the hydrogen production, $Nb_2O_5-N$ produced $19.4{\mu}mol/h$ of hydrogen.