DOI QR코드

DOI QR Code

Control of Chlorinated Volatile Pollutants at Indoor Air Levels Using Polymer-based Photocatalyst, Composite

  • Kim, Byeong-Chan (Department of Environmental Engineering, Kyungpook National University) ;
  • Kim, Hye-Jin (Department of Environmental Engineering, Kyungpook National University) ;
  • Kim, Ji-Eun (Department of Environmental Engineering, Kyungpook National University) ;
  • Park, Eun-Ju (Department of Environmental Engineering, Kyungpook National University) ;
  • Noh, Ji-Sun (Department of Environmental Engineering, Kyungpook National University) ;
  • Kang, Hyun-Jung (Department of Environmental Engineering, Kyungpook National University) ;
  • Shin, Seung-Ho (Department of Environmental Engineering, Kyungpook National University) ;
  • Jo, Wan-Kuen (Department of Environmental Engineering, Kyungpook National University)
  • Received : 2013.01.17
  • Accepted : 2013.03.13
  • Published : 2013.06.28

Abstract

In this study, polyaniline (PANI)-based $TiO_2$ (PANI-$TiO_2$) composites calcined at different temperatures were prepared and their applications for control of trichloroethylene (TCE) and tetrachloroethylene (TTCE) at indoor air levels were investigated. For these target compounds, the photocatalytic control efficiencies of PANI-$TiO_2$ composites did not exhibit any trend with varying calcination temperatures (CTs). Rather, the average control efficiencies of PANI-$TiO_2$ composites over 3-h photocatalytic process increased from 61 to 72% and from 21 to 39% for TCE and TTCE, respectively, as the CT increased from 350 to $450^{\circ}C$. However, for both the target compounds, the average control efficiencies of PANI-$TiO_2$ composites decreased gradually as the CT increased further to 550 and $650^{\circ}C$. These results were ascribed to contents of anatase crystal phase and specific surface area of different particle sizes in the PANI-$TiO_2$ composites, which were demonstrated by the X-ray diffraction and scanning electron microscopy images, respectively. At the lowest input concentration (IC, 0.1 ppm), average control efficiencies of TCE and TTCE were 72 and 39%, respectively, whereas at the highest IC (1.0 ppm) they were 52 and 18%, respectively. As stream flow rate increased from 0.1 to 1.0 L $min^{-1}$, the average control efficiencies of TCE and TTCE decreased from ca. 100 to 47% and ca. 100 to 18%, respectively. In addition, the average control efficiencies of TCE and TTCE decreased from ca. 100 to 23% and ca. 100 to 8%, respectively as the relative humidity increased from 20 to 95%. Overall, these findings indicated that as-prepared PANI-$TiO_2$ composites could be used efficiently for control of chlorinated compounds at indoor air levels;if operational conditions were optimized.

폴리아닐린 기반 이산화티타늄 복합체(폴리아닐린-이산화티타늄 복합체)를 다른 소성온도 조건에서 제조하여 일반 공기질 수준의 트리클로로에틸렌과 테트라클로로에틸렌에 대한 제어 적용성 연구를 수행하였다. 모든 조사대상 오염물질에 대하여 폴리아닐린-이산화티타늄 복합체의 제어효율은 제조 시 적용된 소성온도 변화에도 아무런 경향을 나타내지 않았다. 대신에, 소성온도를 $350^{\circ}C$에서 $450^{\circ}C$로 증가시켰을 때 3시간의 광촉매 공정 동안에 폴리아닐린-이산화티타늄 복합체의 제어효율은 트리클로로에틸렌과 테트라클로로에틸렌에 대하여 61%에서 72%로, 21%에서 39%로 각각 증가하였다. 그러나, 소성온도를 $450^{\circ}C$에서 $550^{\circ}C$$650^{\circ}C$로 더 증가시켰을 경우에는 폴리아닐린-이산화티타늄 복합체에 의한 트리클로로에틸렌과 테트라클로로에틸렌의 제어효율이 점진적으로 감소하였다. 이러한 결과는 폴리아닐린-이산화티타늄 복합체 내 아나타제 결정상의 생성량과 입자의 비표면적 변화 때문으로 판단되었고, 이러한 특성 변화는 X-선 회절과 주사전자현미경 분석결과를 통하여 확인하였다. 가장 낮은 주입농도(0.1 ppm) 조건에서 트리클로로에틸렌과 테트라클로로에틸렌의 평균 제어효율은 각각 72%와 39%이었고, 반면에 가장 높은 주입농도(1.0 ppm) 조건에서는 트리클로로에틸렌과 테트라클로로에틸렌의 평균 제어효율은 각각 52%와 18%로 나타났다. 공급 유량을 0.1 L $min^{-1}$에서 1.0 L $min^{-1}$로 증가시켰을 때 트리클로로에틸렌과 테트라클로로에틸렌의 평균 제어효율이 각각 약 100%에서 47% 그리고 약 100%에서 18%로 감소하였다. 또한, 상대 습도를 20%에서 95%로 증가시켰을 때 트리클로로에틸렌과 테트라클로로에틸렌의 평균 제어효율이 각각 약 100%에서 23% 그리고 약 100%에서 8%로 대폭 감소하였다. 본 연구결과를 종합해볼 때, 작동조건을 최적화할 경우 폴리아닐린-이산화티타늄 복합체가 일반 공기질 농도 수준의 염소계 화합물질 제어를 위해서 효율적으로 이용될 수 있는 것으로 나타났다.

Keywords

References

  1. Yun, T. K., Bae, J. Y., Park, S. S., and Won Y. S., "Synthesis and Electrochemical Properties of Nitrogen Doped Mesoporous $TiO_2$ Nanoparticles as Anode Materials for Lithium-ion Batteries," Clean Tech., 18(2), 177-182 (2012). https://doi.org/10.7464/ksct.2012.18.2.177
  2. Ahmed, S., Rasul, M. G., Brown, R., and Hashib, M. A., "Influence of Parameters on the Heterogeneous Photocatalytic Degradation of Pesticides and Phenolic Contaminants in Wastewater: A Short Review," J. Environ. Manage., 92, 311-330 (2011). https://doi.org/10.1016/j.jenvman.2010.08.028
  3. Lee, G. Y., Park, Y. J., Park, N. K., Lee, T. J., and Kang, M. S., "Hydrogen Production from Photocatalytic Splitting of Methanol/water Solution over Ti Impregnated $WO_3$," Clean Tech., 18(4), 355-359 (2012). https://doi.org/10.7464/ksct.2012.18.4.355
  4. Matos, J., Garcia-Lopez, E., Palmisano, L., Garcia, A., and Marci, G., "Influence of Activated Carbon in $TiO_2$ and ZnO Mediated Photo-assisted Degradation of 2-Propanol in Gassolid Regime," Appl. Catal. B: Environ., 99, 170-180 (2010). https://doi.org/10.1016/j.apcatb.2010.06.014
  5. Shi, J.-W., Cui, H. J., Chen, J.-W., Fu, M. L., Xu, B., Luo, H.-Y., and Ye, Z.-L., "$TiO_2$/Activated Carbon Fibers Photocatalyst: Effects of Coating Procedures on the Microstructure, Adhesion Property, and Photocatalytic Ability," J. Colloid Interf. Sci., 388, 201-208 (2012). https://doi.org/10.1016/j.jcis.2012.08.038
  6. Wang, Y. M., Liu, S. W., Xiu, Z., Jiao, X. B., Cui, X. P., and Pan, J., "Preparation and Photocatalytic Properties of Silica Gel-supported $TiO_2$," Mater. Lett., 60, 975-978 (2006).
  7. Verbruggen, S. W., Ribbens, S., Tytgat, T., Hauchecorne, B., Smits, M., Meynen, V., Cool, P., Martens, J. A., and Lenaerts, S., "The Benefit of Glass Bead Supports for Efficient Gas Phase Photocatalysis: Case Study of a Commercial and a Synthesised Photocatalyst," Chem. Eng. J., 174, 318-325 (2011). https://doi.org/10.1016/j.cej.2011.09.038
  8. Jo, W. K., and Kim, J. T., "Application of Visible-light Photocatalysis with Nitrogen-doped or Unmodified Titanium Dioxide for Control of Indoor-level Volatile Organic Compounds," J. Hazard. Mater., 164, 360-366 (2009). https://doi.org/10.1016/j.jhazmat.2008.08.033
  9. Kim, S., and Lim, S. K., "Preparation of $TiO_2$-embedded Carbon Nanofibers and Their Photocatalytic Activity in the Oxidation of Gaseous Acetaldehyde," Appl. Catal. B: Environ., 84, 16-20 (2008). https://doi.org/10.1016/j.apcatb.2008.02.025
  10. Alves, A. K., Berutti, F. A., Clemens, F. J., Graule, T., and Bergmann, C. P., "Photocatalytic Activity of Titania Fibers Obtained by Electrospinning," Mater. Res. Bull., 44, 312-317 (2009). https://doi.org/10.1016/j.materresbull.2008.06.001
  11. Li, Q., Zhang, C., and Li, J., "Photocatalysis and Wave-absorbing Properties of Polyaniline/$TiO_2$ Microbelts Composite By in Situ Polymerization Method," Appl. Surf. Sci., 257, 944-948 (2010). https://doi.org/10.1016/j.apsusc.2010.07.098
  12. Li, X., Wang, D., Luo, Q., An, J., Wang, Y., and Cheng, G., "Surface Modification of Titanium Dioxide Nanoparticles by Polyaniline via an in Situ Method," J. Chem. Technol. Biotechnol., 83, 1558-1564 (2008). https://doi.org/10.1002/jctb.1970
  13. Liao, G., Chen, S., Quan, X., Zhang, Y., and Zhao, H., "Remarkable Improvement of Visible Light Photocatalysis with Pani Modified Core-shell Mesoporous $TiO_2$ Microspheres," Appl. Catal. B: Environ., 102, 126-131 (2011). https://doi.org/10.1016/j.apcatb.2010.11.033
  14. Fujishima, A., Zhang, X., and Tryk, D. A., "$TiO_2$ Photocatalysis and Related Surface Phenomena," Surf. Sci. Rep., 63, 515- 582 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001
  15. Jia, C., Batterman, S., and Godwin, C., "VOCs in Industrial, Urban And Suburban Neighborhoods-Part 2: Factors Affecting Indoor and Outdoor Concentrations," Atmos. Environ., 42, 2101-2116 (2008). https://doi.org/10.1016/j.atmosenv.2007.11.047
  16. IARC (International Agency for Research on Cancer), "Monographs on the Evaluation of the Carcinogenic Risks of Chemicals to Man," WHO, Geneva, (2004).
  17. Madaeni, S. S., Ghaemi, N., Alizadeh, A., and Joshaghani, M., "Influence of Photo-induced Superhydrophilicity of Titanium Dioxide Nanoparticles on the Anti-fouling Performance of Ultrafiltration Membranes," Appl. Surf. Sci., 257, 6175-6180 (2011). https://doi.org/10.1016/j.apsusc.2011.02.026
  18. Nagarajan, S., and Rajendran, N., "Surface Characterisation and Electrochemical Behaviour of Porous Titanium Dioxide Coated 316l Stainless Steel for Orthopaedic Applications," Appl. Surf. Sci., 255, 3927-3932 (2009). https://doi.org/10.1016/j.apsusc.2008.10.058
  19. Keswani, R. K., Ghodke, H., Sarkar, D., Khilar, K. C., and Srinivasa, R. S., "Room Temperature Synthesis of Titanium Dioxide Nanoparticles of Different Phases in Water in Oil Microemulsion," Colloid. Surf. A: Physicochem. Eng. Asp., 369, 75-81 (2010). https://doi.org/10.1016/j.colsurfa.2010.08.001
  20. Marechal, A., Meunier, B., and Rich, P. R., "Assignment of the CO-sensitive Carboxyl Group in Mitochondrial Forms of Cytochrome C Oxidase Using Yeast Mutants," Biochim. Biophys. Acta, 1817, 1921-1924 (2012). https://doi.org/10.1016/j.bbabio.2012.03.036
  21. Bouzaza, A., Vallet, C., and Laplanche, A., "Photocatalytic Degradation of Some Vocs in the Gas Phase Using an Annular Flow Reactor: Determination of The Contribution of Mass Transfer and Chemical Reaction Steps in the Photodegradation Process," J. Photochem. Photobiol. A-Chem., 177, 212-217 (2006). https://doi.org/10.1016/j.jphotochem.2005.05.027
  22. Demeestere, K., Dewulf, J., and Van Langenhove, H., "Heterogeneous Photocatalysis as an Advanced Oxidation Process for the Abatement of Chlorinated, Monocyclic Aromatic and Sulfurous Volatile Organic Compounds in Air: State of the Art," Crit. Rev. Environ. Sci. Technol., 37, 489-538 (2007). https://doi.org/10.1080/10643380600966467
  23. Devahasdin, S., Fan, C., Li, Jr. K., and Chen, D. H., "$TiO_2$ Photocatalytic Oxidation of Nitric Oxide: Transient Behavior and Reaction Kinetics," J. Photochem. Photobiol. A-Chem., 156, 161-170 (2003). https://doi.org/10.1016/S1010-6030(03)00005-4
  24. Yu, Q. L., and Brouwers, H. J. H., "Indoor Air Purification using Heterogeneous Photocatalytic Oxidation. Part I: Experimental Study," Appl. Catal. B: Environ., 92, 454-461 (2009). https://doi.org/10.1016/j.apcatb.2009.09.004
  25. Sleiman, M., Conchon, P., Ferronato, C., and Chovelon, J.-M., "Photocatalytic Oxidation of Toluene at Indoor Air Levels (Ppbv): Towards a Better Assessment of Conversion, Reaction Intermediates and Mineralization," Appl. Catal. B: Environ., 86, 159-165 (2009). https://doi.org/10.1016/j.apcatb.2008.08.003
  26. Zhao, W., Dai, J., Liu, F., Bao, J., Wang, Y., Yang, Y., Yang, Y., and Zhao, D., "Photocatalytic Oxidation of Indoor Toluene: Process Risk Analysis and Influence of Relative Humidity, Photocatalysts, and VUV Irradiation," Sci. Total Environ., 438, 201-209 (2012). https://doi.org/10.1016/j.scitotenv.2012.08.081
  27. Jeong, J., Sekiguchi, K., Lee, W., and Sakamoto, K., "Photodecomposition of Gaseous Volatile Organic Compounds (Vocs) using $TiO_2$ Photoirradiated by an Ozone-producing UV Lamp: Decomposition Characteristics, Identification of By-products and Water-soluble Organic Intermediates," J. Photochem. Photobiol. A-Chem., 169, 279-287 (2005). https://doi.org/10.1016/j.jphotochem.2004.07.014