• Title/Summary/Keyword: Photocatalyst$TiO_2$

Search Result 462, Processing Time 0.022 seconds

Factors influencing a Photocatalytic System in Circulating Batch Mode: Photocatalyst Dosage, DO, Retention Time and Metal Impurities (순환회분식 광촉매시스템의 영향인자 연구: 광촉매 주입량, 용존산소, 체류시간,전자포획 첨가금속)

  • Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.49-58
    • /
    • 2013
  • A selected halogenated organic contaminant, monochlorophenol was successfully degraded by photocatalytic reaction in a circulating batch system. The photocatalytic degradation in most cases follows first-order kinetics. The photocatalytic reaction rate increased in the $TiO_2$ dosage range of 0.1 g/L to 0.4 g/L, then decreased with further increase of the dosage. Also the degradation rate increased over the range of the retention time from 0.49 min. to 0.94 min., then decreased with further increase of the retention time in the circulating batch reactor. The photocatalytic activity was enhanced by addition of metal impurities, platinum(Pt) and palladium(Pd) onto the photocatalysts. The photocatalytic degradation rate increased with the increase of Pt and Pd in the content range of 0 to 2wt %, then decreased with further increase of the metal contents. Therefore the metal loading to $TiO_2$ influence the degradation rate of a halogenated organic compound by acting as electron traps, consequently reducing the electron/positive hole pair recombination rate.

Hybrid Water Treatment of Carbon Fiber Ultrafiltration Membrane and Polypropylene Beads Coated Photocatalyst: Effect of Organic Materials in Water Back-flushing (탄소섬유 한외여과막 및 광촉매 코팅 폴리프로필렌 구의 혼성 수처리: 물 역세척 시 유기물의 영향)

  • Park, Jin Yong;Kim, Mi Hyang
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.415-423
    • /
    • 2012
  • For hybrid water treatment of carbon fiber ultrafiltration and photocatalyst, we used the hybrid module that was composed of photocatalyst packing between tubular membrane outside and module inside. Photocatalyst was PP (polypropylene) bead coated with $TiO_2$ powder by CVD (chemical vapor deposition) process. Water back-flushing of 10 sec was performed per every period of 10 min to minimize membrane fouling for modified solution, which was prepared with humic acid and kaolin. Resistance of membrane fouling ($R_f$) decreased as humic acid concentration changed from 10 mg/L to 2 mg/L, and finally the highest total permeate volume ($V_T$) could be obtained at 2 mg/L, which was the same with the previous results. Then, treatment efficiencies of turbidity and humic acid were above 98.9% and 88.7%, respectively, those did not depend on the humic acid concentration. However, the treatment efficiency of humic acid increased a little as the humic acid concentration increased in the previous results.

A Study on the Removal of Chloro-Phenols by Photocatalytic Oxidation (광촉매(光觸媒) 산화(酸化) 반응(反應)을 이용한 클로로페놀 분해(分解)에 관한 연구(硏究))

  • Lee, Sang Hyup;Park, Ju Seok;Park, Chung Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.4
    • /
    • pp.87-96
    • /
    • 1995
  • The Electron/Hole Pair is generated when the activation energy produced by ultraviolet ray illuminates to the semiconductor and OH- ion produced by water photocleavage reacts with positive Hole. As a results, OH radical acting as strong oxidant is generated and then Photocatalytic oxidation reaction occurs. The photocatalytic oxidation can oxidate the non-degradable and hazardous organic substances such as pesticides and aromatic materials easier, safer and shorter than conventional water treatment process. So in this study, many factors influencing the oxidation of chlorophenols, such as inorganic electrolytes addition, change of oxygen and nitrogen atmosphere, temperature, pH, oxygen concentration, chlorophenol concentration, were throughly examined. According to the experiments observations, it is founded that the rate of chlorophenol oxidation follows a first-order reaction and the modified Langmuir-Hinshelwood relationship. And the photocatalytic oxidation occurs only when activation energy acting as Electron/Hole generation, oxygen acting as electron acceptor to prevent Electron/Hole recombination, $TiO_2$ powder acting as photocatalyst are present. The effects of variation of dissolved oxygen concentration, temperature and inorganic electrolytes concentration on 2-chlorophenol oxidation are negligible. And the lower the organic concentration, the higher the oxidation efficiency becomes. Therefore, the photocatalytic oxidation is much effective to oxidation of hazardous substances at very low concentration. The oxidation is effective in the range of 0.1 g/L-10 g/L of $TiO_2$. Finally when the ultra-violet ray is illuminated to $TiO_2$, the surface characteristics of $TiO_2$ change and Adsorption/Desorption reaction on $TiO_2$ surface occurs.

  • PDF

Photolysis Improvement of Toluene in 50%TiO2/6%WO3 Sol Solutions Sensitized by Acetone (50%TiO2/6%WO3 졸 용액에서의 톨루엔 처리에 대한 아세톤의 광활성 증가효과)

  • Shin, Hye-Seung;Kim, Jae-Hyoun
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.3
    • /
    • pp.261-268
    • /
    • 2012
  • Objectives: The photocatalytic degradation of toluene in a batch mode photoreactor for the purpose of the hazardous waste treatment was investigated. Methods: Kinetic experiments using a low pressure mercury lamp (Lambda Scientific Pty Ltd, 50 Watt) emitting both UV and visible light were performed at $31^{\circ}C$ over toluene concentrations ranging from 10 to 50 mg/l in water with $50%TiO_2/6%WO_3$ (TW) concentration of 1 g/l at a pH of 6. Results: Kinetic studies showed that $50%TiO_2/6%WO_3$ (TW) photocatalyst was highly active in toluene degradation; we observed that 99% of the pollutant was degraded after six hours under visible irradiation; furthermore, we observed that adsorption onto TW catalyst was responsible for the decrease of toluene with pseudo-first order kinetics. It was also found that oxygen as a radical source in the sol medium played a significant role in affecting the photodegradation of toluene, especially with a two-fold elevation. This increase was achieved by a more than four-fold elevation of the photodegradation of toluene in the presence of acetone than without, presumably via an energy transfer mechanism. Conclusions: We concluded that photodegradation in acetone and oxygen molecules along with TW was an effective method for the removal of toluene from wastewater.

Synthesis of Titanium Dioxides from Peroxotitanate Solution Using Hydrothermal Method and Their Photocatalytic Decomposition of Methylene Blue (수열합성법에 의한 과산화티탄 수용액으로부터 이산화티탄의 합성 및 메틸렌블루의 광분해반응)

  • Jung, Won Young;Lee, Seung Ho;Kim, Dae Sung;Lee, Gun Dae;Park, Seong Soo;Hong, Seong-Soo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.417-422
    • /
    • 2010
  • Nanosized $TiO_2$ particles were prepared by hydrothermal method from the aqueous peroxotitanate solution using the different carboxylic acids as an additives. The physical properties of prepared nanosized $TiO_2$ particles were investigated and we also examined the activity of $TiO_2$ particles as a photocatalyst on the decomposition of methylene blue. The major phase of all the prepared $TiO_2$ particles was an anatase structure regardless of carboxylic acids and a rutile peak was observed above $700^{\circ}C$. The photocatalytic activity increased with an increase of hydrocarbon number of carboxylic compounds and the highest activity was shown on the catalysts which was prepared using succinic acid as an additive and calcined at $500^{\circ}C$.

Degradation and mineralization of violet-3B dye using C-N-codoped TiO2 photocatalyst

  • Putri, Reza Audina;Safni, Safni;Jamarun, Novesar;Septiani, Upita;Kim, Moon-Kyung;Zoh, Kyung-Duk
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.529-535
    • /
    • 2020
  • The present study investigated the photodegradation of synthetic organic dye; violet-3B, without and with the addition of C-N-codoped TiO2 catalyst using a visible halogen-lamp as a light source. The catalyst was synthesized by using a peroxo sol-gel method with free-organic solvent. The effects of initial dye concentration, catalyst dosage, and pH solution on the photodegradation of violet-3B were examined. The efficiency of the photodegradation process for violet-3B dye was higher at neutral to less acidic pH. The kinetics reaction rate of photodegradation of violet-3B dye with the addition of C-N-codoped TiO2 followed pseudo-first order kinetics represented by the Langmuir-Hinshelwood model, and increasing the initial concentration of dyes decreased rate constants of photodegradation. Photodegradation of 5 mg L-1 violet-3B dye achieved 96% color removal within 240 min of irradiation in the presence of C-N-codoped TiO2 catalyst, and approximately 44% TOC was removed as a result of the mineralization.

Dependence of Surface Morphology of Transparent Hydrophobic Anti-Reflective Coating (투명 발수 반사방지 코팅의 표면 형상 의존성)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.771-776
    • /
    • 2017
  • The cover glass of mobile displays and photovoltaic cells needs a functional coating, such as an anti-reflection and self-cleaning coating. Numerous studies have been conducted on the engineering application of biomimetic functional surfaces, such as moth eye and lotus leaf Anti-reflection coantings of silica nanoparticles could enhance the light transmittance. $TiO_2$ photocatalyst coatings have been applied to self-cleaning functional films. In this study, transparent hydrophobic anti-reflective coatings consisting of thin layers of $SiO_2/TiO_2$ nanoparticles were fabricated on a slide glass substrate by the sol-gel process and dip-coating process. The dependence of the surface morphology of the functional coatings was investigated by the atomic force microscopy (AFM), contact angle measurement, and UV-visible spectroscopy. It was found that the coating of $TiO_2$ nanoparticles exhibited a high average transmittance comparable to that of the bare slide glass substrate in the visible light range. The bi-layered functional coating of 7 nm $SiO_2$/7nm $TiO_2$ nanoparticles exhibits a transparent hydrophobic surface with a contact angle of $110^{\circ}$ and an improvement of the average transmittance of 2.3% compared to the bare slide glass substrate in the visible light range.

Inconsistent Activities of Titanium Oxide Photocatalysts (산화티타늄 광촉매 활성의 비일관성)

  • Ryu, Jungho;Choi, Wonyong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.371-375
    • /
    • 2007
  • This study measured the photocatalytic activities of five $TiO_2$ samples commercially available in terms of the degradation rate of nine organic substrates. Efforts were made to correlate the activities with the properties of both catalysts and substrates but little correlation was found. The result clearly shows that the photocatalytic activities sensitively depend on the kind of the test substrates, which strongly supports the fact that the activity measured with one or two model compounds cannot represent the overall performance of a photocatalyst. Therefore, this multi-aspect and inconsistent activity of photocatalytic reaction should be fully understood prior to establish the standard protocol for the activity determination.

Photocatalytic-Photochemical Reaction of Wastewater Dyes in aqueous Solution (염료폐수 용액의 광축매-광화학 반응)

  • 김삼혁;최칠남;정오진
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.241-248
    • /
    • 1999
  • The photocatalytic decolorization and photodegradation of wastewater contamininated with dyes such as methyleneblue tetrahydrate(MBT), methyl orange(MO), phenol red(PR) and the mixed dyes have been studied using a batch reactor in the presence of aerotropic and titania. Degussa P25 titanium oxide was used as the photocatalyst and proved to be effective for the dyes-degradation when irradiated with UV-light source emitting the wavelength of 253.7 nm in the presence of air. In addition to removing the color from the wastewater, the photocatalytic reaction simultaneously reduced the COD and optical density which suggests that the dissolved organic compounds have been photooxidized. The reaction rate of disappearance of the dyes were measured as a function of the irradiation times. The photooxidative procedure of the aquatic solution have the first order reaction-kinetics. The rate constants were increased in the order of PR < MBT < $gL^{-1}-TiO_2$ powder were irradiated with the UV -light source.

  • PDF

Photocatalytic Degradation of Methyl-tertiary butyl ether using Element-Enhanced Photocatalyst

  • Yang, Chang-Hui;Sin, Myeong-Hui;Jang, Jong-Dae;Lee, Jin-U;Choe, Seong-Rak;Jo, Wan-Geun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.110-113
    • /
    • 2008
  • 최근 가시광선에서 응답하는 광촉매를 이용하여 저농도의 일반적인 실내 대기 오염물질 제어를 위한 적용가능성에 대해 많은 평가가 있어왔다. 가시광선에서 활성을 보이는 질소 원소가 도핑된 TiO$_2$광촉매를 이용하여 대표적인 휘발성유기화합물질들 중에 하나인 MTBE의 분해율에 대한 실험을 실시하였다. 본 연구에서 여러 가지 변수들 중에 농도와 상대습도에 따라 MTBE의 분해율에 대하여 실험하였으며, 본 연구의 실험조건하에서 질소가 도핑된 TiO$_2$ 광촉매를 통해서 효과적으로 MTBE가 제거됨을 확인 할 수 있었다.

  • PDF