• 제목/요약/키워드: Photoacoustic spectroscopy

검색결과 24건 처리시간 0.021초

자동차 배출가스 측정을 위한 Photoacoustic Spectroscopy Cell의 3차원 유동장 해석 (Three-Dimensional Fluid Flow Analysis of Photoacoustic Spectroscopy Cell for Measurement of Automotive Exhaust Gas)

  • 김현철;박종호
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.111-118
    • /
    • 2003
  • Recently, environmental damage to urban area becomes serious problem due to the exhaust emissions by increasing the number of vehicle. Especially, exhaust emission from diesel vehicles are blown to be harmful to human health and environment. Photoacoustic Spectroscopy system is very useful technology for simultaneous and continuous measurement of the various components of the automotive exhaust gas. In this study, in order to reduce emission gases from automobile, we tried to develop the measurement system of Photoacoustic Spectroscopy. To improve performance of high sensitive Photoacoustic Spectroscopy system for automotive exhaust emissions, the shape of Photoacoustic Spectroscopy cell was optimized to use the flow analysis. And Exhaust emission data of the 1,500cc gasoline engine was fixed the working fluid. The characteristics of fluid flow for cell were analyzed by various conditions in detail.

Consideration of Temperature and Slip Correction for Photothermal Spectrometry

  • Lee, Jeonghoon
    • Asian Journal of Atmospheric Environment
    • /
    • 제9권1호
    • /
    • pp.86-90
    • /
    • 2015
  • Temperature was considered to estimate the minimum detectable absorption coefficient of aerosol particles from photothermal spectroscopy. Light energy absorbed by subsequent emission from the aerosol results in the heating of the aerosol sample and consequently causes a temperature change as well as changes in thermodynamic parameters of the sample. This thermal effect is the basis of photothermal spectroscopy. Photothermal spectroscopy has several types of techniques depending on how the photothermal effects are detected. Photothermal interferometry traces the photothermal effect, refractive index, using an interferometer. Photoacoustic spectroscopy detects the photothermal effect, sound wave, using a microphone. In this study, it is suggested that the detection limit for photothermal spectroscopy can be influenced by the introduction of a slip correction factor when the light absorption is determined in a high temperature environment. The minimum detectable absorption coefficient depends on the density, the specific heat and the temperature, which are thermodynamic properties. Without considering the slip correction, when the temperature of the environment is 400 K, the minimum detectable absorption coefficient for photothermal interferometry increases approximately 0.3% compared to the case of 300 K. The minimum detectable absorption coefficient for photoacoustic spectroscopy decreases only 0.2% compared to the case of 300 K. Photothermal interferometry differs only 0.5% point from photoacoustic spectroscopy. Thus, it is believed that photothermal interferometry is reliably comparable to photoacoustic spectroscopy under 400 K.

Determination of Doping Density in GaAs Semiconductor by Wavelength-Dependent Photoacoustic Spectroscopy

  • Lim, Jong-Tae;Choi, Ok-Lim;Boo, Doo Wan;Choi, Joong-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.895-898
    • /
    • 2014
  • The wavelength dependence of the photoacoustic signal for n-type GaAs semiconductors in the region of the band-gap energies was investigated. The significant changes in the phase and amplitude of the photoacoustic signal near the band-gap absorption wavelengths were observed to occur when the Si-doping densities in GaAs were varied. Particularly, the first derivatives of the photoacoustic phase vs. wavelength graphs were evaluated and fitted with single Gaussian functions. The peak centers and the widths of the Gaussian curves clearly showed linear relationships with the log values of the Si-doping densities in n-type GaAs semiconductors. It is proposed that the wavelength-dependent PA spectroscopy can be used as a simple and nondestructive method for measuring the doping densities in bulk semiconductors.

Single-Beam을 이용한 광음향 분광법에 관한 연구 (A Study on Single-Beam Photoacoustic Spectroscopy)

  • 김중환
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1984년도 추계학술발표회 논문집
    • /
    • pp.33-35
    • /
    • 1984
  • A new type single beam photoacoustic spectrometer suitable for measuring optical absorption of condensed powder matter with the automatic calibration capability of a source power spectrum is introduced. The signal processing until of this spectrometer consists of a photoacoustic cell a lock-in amp., a switching circuit and a personal computer. The measured optical absorption spectra of a few material by this method are good agreement with the results obtained by the double-beam photoacoustic spectrometer.

  • PDF

광음향 분광을 이용한 고체레이저의 방사양자효율 측정 (Measurement of the Radiative Quantum Efficiency of a Solid-State Laser Using Photoacoustic Spectroscopy)

  • 김병태
    • 한국광학회지
    • /
    • 제26권2호
    • /
    • pp.98-102
    • /
    • 2015
  • PZT를 검출기로 사용하는 광음향 분광 측정법으로 고체레이저의 방사양자효율을 측정하였다. 반도체레이저 여기 Nd:S-VAP 레이저에서 레이저가 발진하고 있을 때 약 58.3 %의 양자효율을 얻었다. 방사양자효율의 측정은 레이저 공진기의 최적화를 가능하게 하는 한 방법임을 제시하였다.

Kinetic Investigation of CO2 Reforming of CH4 over Ni Catalyst Deposited on Silicon Wafer Using Photoacoustic Spectroscopy

  • Yang, Jin-Hyuck;Kim, Ji-Woong;Cho, Young-Gil;Ju, Hong-Lyoul;Lee, Sung-Han;Choi, Joong-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권5호
    • /
    • pp.1295-1300
    • /
    • 2010
  • The $CO_2-CH_4$ reaction catalyzed by Ni/silicon wafers was kinetically studied by using a photoacoustic technique. The catalytic reaction was performed at various partial pressures of $CO_2$ and $CH_4$ (50 Torr total pressure of $CO_2/CH_4/N_2$) in the temperature range of 500 - $650^{\circ}C$ in a static reactor system. The photoacoustic signal that varied with the $CO_2$ concentration during the catalytic reaction was recorded as a function of time. Under the reaction conditions, the $CO_2$ photoacoustic measurements showed the as-prepared Ni thin film sample to be inactive for the reaction, while the $CO_2/CH_4$ reactions carried out in the presence of the sample pre-treated in $H_2$ at $600^{\circ}C$ were associated with significant time-dependent changes in the $CO_2$ photoacoustic signal. The rate of $CO_2$ disappearance was measured from the $CO_2$ photoacoustic signal data in the early reaction period of 50 - 150 sec to obtain precise kinetic data. The apparent activation energy for $CO_2$ consumption was determined to be 6.9 kcal/mol from the $CO_2$ disappearance rates. The partial reaction orders, determined from the $CO_2$ disappearance rates measured at various $PCO{_2}'S$ and $PCH{_4}'S$ at $600^{\circ}C$, were determined to be 0.33 for $CH_4$ and 0.63 for $CO_2$, respectively. Kinetic data obtained in these measurements were compared with previous works and were discussed to construct a catalytic reaction mechanism for the $CO_2-CH_4$ reaction over Ni/silicon wafer at low pressures.

광음향 분광학의 광학적 측정 (Acousto-Optic Detection for Photoacoustic Spectroscopy)

  • 최중길
    • 한국광학회지
    • /
    • 제2권1호
    • /
    • pp.50-56
    • /
    • 1991
  • This paper describes several optical microphones, "optophone", where a low-power He-Ne laser beam is deflected by a reflecting diaphragm mounted on a photoacoustic cell. A comparision of an acousto-optic detection to a conventional microphone shows comparable sensitivities for the photoacoustic detection. The greatest application of these detections may be found where small volume spectro-phone cells are employed, or where conventional microphones cannot be employed because of high or low temperature or chemical corrosion problems. problems.

  • PDF

Photoacoustic Effect of Ethene: Sound Generation due to Plant Hormone Gases

  • Ide, David W.;Park, Han Jung
    • 대한화학회지
    • /
    • 제61권4호
    • /
    • pp.139-142
    • /
    • 2017
  • Ethene ($C_2H_4$), which is produced in plants as they mature, was used to study its photoacoustic properties using photoacoustic spectroscopy. Detection of trace amounts, with $N_2$ gas, of $C_2H_4$ gas was also applied. The gas was tested in various conditions-temperature, concentration of the gas, gas cell length, and power of the laser- to determine their effect on the photoacoustic signal, the ideal conditions to detect trace gas amounts, and concentration of $C_2H_4$ produced by an avocado and a banana. A detection limit of 10 ppm was determined for pure $C_2H_4$. A detection of 5% and 13% (by volume) concentration of $C_2H_4$ was produced for a ripening avocado and banana, respectively, in closed space.

In situ Photoacoustic Study of Water Gas Shift Reaction over Magnetite/Chromium Oxide and Copper/Zinc Oxide Catalysts

  • Byun, In-Sik;Choi, Ok-Lim;Choi, Joong-Gill;Lee, Sung-Han
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권11호
    • /
    • pp.1513-1518
    • /
    • 2002
  • Kinetic studies on the water-gas shift reaction catalyzed by magnetite/chromium oxide and copper/zinc oxide were carried out by using an in situ photoacoustic spectroscopic technique. The reactions were performed in a closed-circulation reactor system using a differential photoacoustic cell at total pressure of 40 Torr in the temperature range of 100 to $350^{\circ}C.$ The CO2 photoacoustic signal varying with the concentration of CO2 during the catalytic reaction was recorded as a function of time. The time-resolved photoacoustic spectra obtained for the initial reaction stage provided precise data of CO2 formation rate. The apparent activation energies determined from the initial rates were 74.7 kJ/mol for the magnetite/chromium oxide catalyst and 50.9 kJ/mol for the copper/zinc oxide catalyst. To determine the reaction orders, partial pressures of CO(g) and H2O(g) in the reaction mixture were varied at a constant total pressure of 40 Torr with N2 buffer gas. For the magnetite/chromium oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.93 and 0.18, respectively. For the copper/zinc oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.79 and 0, respectively.