• Title/Summary/Keyword: Photo-curable silica ink

Search Result 2, Processing Time 0.009 seconds

Formulation and ink-jet 3D printability of photo curable nano silica ink (광경화 나노 실리카 잉크의 합성 및 잉크젯 프린팅 적층 특성평가)

  • Lee, Jae-Young;Lee, Ji-Hyeon;Park, Jae-Hyeon;Nahm, Sahn;Hwang, Kwang-Taek;Kim, Jin-Ho;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.345-351
    • /
    • 2019
  • Recently, ink-jet printing technology has been applied for various industries such as semiconductor, display, ceramic tile decoration. Ink-jet printing has advantages of high resolution patterning, fast printing speed, high ink efficiency and many attempts have been made to apply functional materials with excellent physical and chemical properties for the ink-jet printing process. Due to these advantages, research scope of ink-jet printing is expanding from conventional two-dimensional printing to three-dimensional printing. In order to expand the application of ink-jet printing, it is necessary to optimize the rheological properties of the ink and the interaction with the substrate. In this study, photo curable ceramic complex ink containing nano silica particles were synthesized and its printability was characterized. Contact angle of the photo curable silica ink were modified by control of the ink composition and the surface property of the substrate. Effects of contact angle on printing resolution and three-dimensional printability were investigated in detail.

Rheological behavior and IPL sintering properties of conductive nano copper ink using ink-jet printing (전도성 나노 구리잉크의 잉크젯 프린팅 유변학적 거동 및 광소결 특성 평가)

  • Lee, Jae-Young;Lee, Do Kyeong;Nahm, Sahn;Choi, Jung-Hoon;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.174-182
    • /
    • 2020
  • The printed electronics field using ink-jet printing technology is in the spotlight as a next-generation technology, especially ink-jet 3D printing, which can simultaneously discharge and precisely control various ink materials, has been actively researched in recent years. In this study, complex structure of an insulating layer and a conductive layer was fabricated with photo-curable silica ink and PVP-added Cu nano ink using ink-jet 3D printing technology. A precise photocured silica insulating layer was designed by optimizing the printing conditions and the rheological properties of the ink, and the resistance of the insulating layer was 2.43 × 1013 Ω·cm. On the photo-cured silica insulating layer, a Cu conductive layer was printed by controlling droplet distance. The sintering of the PVP-added nano Cu ink was performed using an IPL flash sintering process, and electrical and mechanical properties were confirmed according to the annealing temperature and applied voltage. Finally, it was confirmed that the resistance of the PVP-added Cu conductive layer was very low as 29 μΩ·cm under 100℃ annealing temperature and 700 V of IPL applied voltage, and the adhesion to the photo-cured silica insulating layer was very good.