• Title/Summary/Keyword: Phosphorus species

Search Result 327, Processing Time 0.025 seconds

Bloom of a Filamentous Green Alga Cladophora vadorum (Areschoug) Kützing and Nutrient Levels at Shangrok Beach, Buan, Korea (부안 상록해수욕장의 사상 녹조류 금발대마디말(Cladophora vadorum) 대량발생과 영양염 농도)

  • Ha, Dong Soo;Yoo, Hyun Il;Chang, Soo Jung;Hwang, Eun Kyoung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.2
    • /
    • pp.241-246
    • /
    • 2016
  • A filamentous green alga Cladophora vadorum (Areschoug) Kützing, bloomed at Shangrok Beach, Buan, Republic of Korea, in September 2015. This alga is currently distributed worldwide. Concentrations of total nitrogen (TN), total phosphorus (TP), dissolved inorganic nitrogen (DIN), and dissolved inorganic phosphorus (DIP) were analyzed in the bloom area and compared to those of other areas in the vicinity. DIN and DIP concentrations were similar to those of other areas. However, TN and TP were as much as six and ten times higher than in other areas, respectively. As in other Cladophora species, the bloom of C. vadorum at Shangrok Beach in 2015 appears to have depended on the TP concentration in the seawater. This suggests that blooms in the area can be controlled by reducing TP.

Performance Evaluation of Subsurface-flow Wetland with Media Possessing Different Adsorption Capacities for Nitrogen and Phosphorus (질소 및 인에 대한 흡착특성이 다른 여재를 사용한 지하흐름형 인공습지 효율 평가)

  • Seo, Jun-Won;Jang, Hyung-Suk;Kang, Ki-Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.155-160
    • /
    • 2007
  • Constructed wetland has been widely used for the treatment of sewage, stormwater runoff, industrial wastewater, agricultural runoff, acid mine drainage and landfill leachate. For the removal of nitrogen and phosphorus, uptake by plants and adsorption to media material are the major processes, and, therefore, the selection of media with specific adsorption capacity is the critical factor for the optimal design of wetland along with the selection of appropriate plant species. In this study, two media materials (loess bead and mixed media) possessing different adsorption characteristics for ammonium and phosphate were selected, and their adsorption characteristics were evaluated. In addition, the performance of subsurface-flow wetland systems employing these media was evaluated in both batch and continuous flow systems. With LB medium, beter phosphorus removal was observed, while better ammonia removal was obtained with MM medium. In addition, enhanced removal efficiencies were observed in the wetland systems employing both media and aquatic plants, mainly due to the better environment for microbial growth. As a result, appropriate selection or combination of media with respect to the inflow water quality maybe important factors for the successful design and operation of wetland systems.

Nutrient Uptake Kinetics of Nitzschia sp. for Bioremediation of the Benthic Layer (저질 환경 개선을 위한 Nitzschia sp.의 영양염 흡수 동력학)

  • Oh, Seok-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.4
    • /
    • pp.301-304
    • /
    • 2008
  • For bioremediation of the benthic layer uptake kinetics of phosphate by microphytobenthos Nitzschia sp.(JFH200406) were investigated. A short-term phosphate uptake revealed that the maximum uptake rate(${\rho}_{max}$) and half-saturation constant($K_s$) were 0.132 pmol/cell/hr and 502.6 ${\mu}M$, respectively. The maximum specific uptake rate calculated between ${\rho}_{max}$ and the phosphorus cell quota($Q_p$), calculated from Strathmann equation, was 14.4/day. The values of these parameters indicate that Nitzschia sp. accommodates well to surroundings of high phosphate, and can uptake over 14-times more than the phosphorus cell quota. Thus, microphytobenthos Nitzschia sp. may be a useful species for bioremediation of the benthic layer.

Phylogenetic Analysis of Bacterial Diversity of Enhanced Biological Phosphorus Removal Activated Sludge by Isolation and Cloning of 16S rDNA

  • Nakamura, Kazunori;Hanada, Satoshi;Kamagata, Yoichi;Kawaharasaki, Mamoru
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.10a
    • /
    • pp.109-117
    • /
    • 2000
  • Bacterial community structure composing enhanced biological phosphorus removal (EBPR) activated sludge was analyzed phylogenetically by cloning 165 rDNA after direct DNA extraction. Then, this result was compared with 165 rDNA sequences of randomly isolated bacterial species. The results clearly showed that there are no coincidence between the sequences retrieved directly from activated sludge and those of isolated strains, suggesting that many important bacteria are hidden in activated sludge because of the difficulty in isolation and culture of them.

  • PDF

The role of macrophytes in wetland ecosystems

  • Rejmankova, Eliska
    • Journal of Ecology and Environment
    • /
    • v.34 no.4
    • /
    • pp.333-345
    • /
    • 2011
  • Aquatic macrophytes, often also called hydrophytes, are key components of aquatic and wetland ecosystems. This review is to briefly summarizes various macrophyte classifications, and covers numerous aspects of macrophytes' role in wetland ecosystems, namely in nutrient cycling. The most widely accepted macrophyte classification differentiates between freely floating macrophytes and those attached to the substrate, with the attached, or rooted macrophytes further divided into three categories: floating-leaved, submerged and emergent. Biogeochemical processes in the water column and sediments are to a large extent influenced by the type of macrophytes. Macrophytes vary in their biomass production, capability to recycle nutrients, and impacts on the rhizosphere by release of oxygen and organic carbon, as well as their capability to serve as a conduit for methane. With increasing eutrophication, the species diversity of wetland macrophytes generally declines, and the speciose communities are being replaced by monoculture-forming strong competitors. A similar situation often happens with invasive species. The roles of macrophytes and sediment microorganisms in wetland ecosystems are closely connected and should be studied simultaneously rather than in isolation.

Selection of Microalgae for Advanced Treatment of Swine Wastewater and Optimization of Treatment Condition. (축산폐수의 3차 처리를 위한 미세조류의 선별 및 처리조건의 최적화)

  • 김성빈;이석준;김치경;권기석;윤병대;오희목
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.1
    • /
    • pp.76-82
    • /
    • 1998
  • The feasibility of algae as means of removing nitrogen and phosphorus from secondary treated swine wastewater was studied. Among the tested 7 species of Chlorella vulgaris (UTEX 265), Chlorella sp. GE 21, Botryococcus braunii (UTEX 572), Botryococcus sp. GE 24, Scenedesmus quadricauda, Phormidium sp. GE 2, and Spirulina maxima (UTEX 2342), C. vulgaris was selected for its fast growth and abilities to remove nitrogen and phosphorus and to produce algal biomass from swine wastewater. C. vulgaris grew well at 35$^{\circ}C$, and the optimum initial pH for growth was 8.0. In the effect of light intensity, the growth of C. vulgaris was limited under a light intensity of less than 40 ${\mu}$E/$m^2$/s. The secondary treated swine wastewater contained 58.7 mg/l of total nitrogen and 14.7 mg/l of total phosphorus, and was diluted to 75, 50, and 25% with groundwater to be treated. Nitrogen and phosphorus were removed by C. vulgaris in all diluted swine wastewaters among which the most effective removal was in 75% swine wastewater (swine wastewater:groundwater=3:1). There was a tendency of linear increase in nitrogen and phosphorus removal time with increasing concentration of swine wastewater. Under the optimized culture condition, total nitrogen and total phosphorus were effectively removed to 95.3% and 96.0%, respectively, in 25% swine wastewater after 4-day incubation.

  • PDF

Pattern of Species Distribution along Environmental Variables in Two Different Forest Beat of Raghunandan Reserve Forest of Habiganj

  • Hosen, Md. Shahadat;Ahamed, Md. Saleh
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.4
    • /
    • pp.257-269
    • /
    • 2017
  • The study has piloted to find the Pattern of species distribution along environmental variables and disturbance in Raghunandan Reserve Forest. Shaltila and Shahapur beat of Raghunandan Hill Reserve Forest are situated in Chunarughat sub-district of Habiganj district between $24^{\circ}5^{\prime}-24^{\circ}10^{\prime}N$ and $91^{\circ}25^{\prime}-91^{\circ}30^{\prime}E$ under the Sylhet Forest Division. The Environmental variable and vegetation data were collected from 30 sample plots from each forest beat by using arbitrary sampling without preconceived bias. 51 species were found from Shaltila and 34 species found in Shahapur forest beat. Thus the dataset continued with total 85 species in 60 samples. To determine the relationships between tree species distribution and environmental variables, Canonical Correspondence Analysis (CCA) ordination method were performed separately for two forest beat. In CCA ordination, tree species showed significant variation along environmental gradients in terms of soil organic matter and disturbances (p<0.05) in the case of Shaltila forest. Potassium has a significant relationship with axis 1 and axis 2 in this forest. But Shahapur forest showed no significant relationship between species and environmental variables. Phosphorus has a significantly negative relationship with axis 2 in this forest. Disturbance played as a critical role of this forest thus influencing the distribution of species. The study showed that the distributions of tree species are strongly influenced by disturbance and organic matter in Shaltila and Shahapur forest beat showed no significant relationship between species and environmental variables. Future research should be included more environmental variables with larger study area that identify the most important environmental forces which will drive by species distribution findings in this forest.

Species Composition and Nutrient Absorption by Plants in the Immediate Postfire Year (산화 당년에 재생되는 식물군집의 종 구성과 식물의 영양염류 흡수량)

  • 문형태;정연숙
    • The Korean Journal of Ecology
    • /
    • v.20 no.1
    • /
    • pp.27-33
    • /
    • 1997
  • Species composition and the amount of nutrients absorbed by regenerating plants on a pine forest in the immediate postfire year were compared with those in an unburned pine forest in Kosung, Kangwon Province. Pteridium aquilinum var. latiusculum, Cyperus amuricus, Lespedeza biolor, Quercus serrata, Lysimachia clethroides were the most abundant species in burned area. In unburned area. Quercus mongolica, Rhododendron mucronulatum, Carex humilis, Rhododendron schlippenbachii, Spodiopogon sibiricus were the most abundant species. Standing biomass of understory vegetation in burned and unburned area was 170.2 g $D.W/m^2$ and 171.3g $D.W/m^2$, respectively. Nutrient concentrations of plants in burned area, especially for phosphorus and potassium, were higher than those in unburned area. The amounts of nutrients absorbed by understory plants in burned and unburned area were 37.4 and 33.6 kg/ha for N, 0.36 and 0.19 kg/ha for P, 30.6 and 18.8 kg/ha for K, 8.5 and 7.8 kg/ha Ca, 5.2 and 5.7 kg/ha for Mg, respectively. This suggests that regenerating vegetation can hold the significant amount of nutrients, although there may be considerable losses of nutrients from ecosystem after fire.

  • PDF

A Checklist of the Basidiomycetous Macrofungi and a Record of Five New Species from Mt. Oseo in Korea

  • Lee, Won Dong;Lee, Hyun;Fong, Jonathan J.;Oh, Seung-Yoon;Park, Myung Soo;Quan, Ying;Jung, Paul E.;Lim, Young Woon
    • Mycobiology
    • /
    • v.42 no.2
    • /
    • pp.132-139
    • /
    • 2014
  • Basidiomycetous macrofungi play important roles in maintaining forest ecosystems via carbon cycling and the mobilization of nitrogen and phosphorus. To understand the impact of human activity on macrofungi, an ongoing project at the Korea National Arboretum is focused on surveying the macrofungi in unexploited areas. Mt. Oseo was targeted in this survey because the number of visitors to this destination has been steadily increasing, and management and conservation plans for this destination are urgently required. Through 5 field surveys of Mt. Oseo from April to October 2012, 116 specimens of basidiomycetous macrofungi were collected and classified. The specimens were identified to the species level by analyzing their morphological characteristics and their DNA sequence data. A total of 80 species belonging to 57 genera and 25 families were identified. To the best of our knowledge, this is the first study to identify five of these species-Artomyces microsporus, Hymenopellis raphanipes, Pholiota abietis, Phylloporus brunneiceps, and Sirobasidium magnum-in Korea.

The Decomposition of Leaf Litters of Some Tree Species in Temperate Deciduous Forest in Korea II. Changes in Nutrient Content During Litter Decomposition

  • Yang, Keum-Chul;Shim, Jae-Kuk
    • The Korean Journal of Ecology
    • /
    • v.26 no.6
    • /
    • pp.313-319
    • /
    • 2003
  • Dry weight loss and nutrient release from leaf litter for six tree species were studied using litter bag methods. The litter bags were incubated for f6 months on the forest floor in temperate deciduous forest in Mt. Cheonma, located at the middle part of Korean Peninsula. The changes in nutrient content and the rate of dry weight loss in leaf litter varied with litter types. The litter of Pinus densiflora showed the lowest rate of mass loss (k=0.33), nitrogen concentration (0.89%) and ash concentration (2.50%), while showed the highest C/N ratio (63.40). On the other hand, the litter of Acer pseudo-sieboldianum showed the fastest rate of mass loss (k=0.82), the highest nitrogen concentration (1.11%), and the lowest C/N ratio (49.40). During the decomposition, nitrogen, phosphorus and calcium in the leaf litters showed relatively slow decreasing pattern compared to other elements (carbon, potassium, magnesium, manganese and sodium), but potassium and sodium decreased at early stage of the decomposition for all leaf litters. Differences in annual decomposition rates of litter among species were consistent with the particular chemical characteristics of their leaf litters. The initial concentration of nitrogen was positively correlated with litter decomposition rate for six species, while litter decomposition rate of six species was negatively correlated with C:N ratio of initial leaf litters.