• Title/Summary/Keyword: Phosphorus and Algae removal

Search Result 34, Processing Time 0.027 seconds

Effects of sludge and $CO_2$ addition on advanced treatment of swine wastewater by using microalgae (미세조류를 이용한 양돈폐수 고도처리에서 슬러지 및 이산화탄소의 첨가의 영향)

  • Lim, Byung-Ran;Park, Ki-Young;Lee, Ki-Say;Lee, Soo-Koo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.307-312
    • /
    • 2011
  • The potential of algal-bacterial culture was investigated for advanced treatment of animal wastewater. Fed-batch experiments were carried out to examine treatability of nitrogen and phosphorus in different microbial consortium: Chlorella vulgaris, activated sludge, three microalgae strains (Scenedesmus, Microcystis, Chlorella) and Bacillus consortium, and three microalgae strains and sludge consortium. Single culture of C. vugaris showed the better efficiency for nitrogen removal but was not good at organic matter and phosphorus removal compared with activated sludge. Three microalgae and Bacillus consortium was best culture among the culture and consortium for pollutants removal tested in this experiment. Effect of $CO_2$ addition was studied by using three microalgae and Bacillus consortium. $CO_2$ addition enhanced T-P removal efficiency up to 60%. However, removal efficiencies of T-N and ammonia nitrogen reduced on the contrary.

Evaluation on the Phosphate Uptake Rate of Green Algae under Diurnal Rhythm and Algae Control Method (일주기에 따른 녹조류의 인흡수율 및 조류제어방법 평가)

  • Jang Kam-Yong;Lim Kyoung-Mook;Noh Tae-Mok;Lee Hac-Su;Park Sung-Ha
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.873-879
    • /
    • 2005
  • This study was investigate to evaluate the phosphate uptake rate of green algae in relation to diurnal rhythm and algae control method. The phosphate uptake rates of Chlorella vulgaris and Ankistrodesmus convolutus increased in light period and decreased in dark period. On the contrary, those of Chlamydomonas sp. showed a peak in the late dark period. The differences among species in phosphate uptake in relation to diurnal rhythm were due to the severe competition among species and seemed to alleviate the competition for nutrient supplies. The compound of CellCaSi, Ca and Fe showed the effective removal of the phosphorus. The extracts from rice and barley straw exhibited a significant effect on the growth inhibition of Microcystis aeruginosa.

Comparison of Models to Describe Growth of Green Algae Chlorella vulgaris for Nutrient Removal from Piggery Wastewater (양돈폐수의 영양염류 제거를 위한 녹조류 Chlorella vulgaris 성장 모형의 비교)

  • Lim, Byung-Ran;Jutidamrongphan, Warangkana;Park, Ki-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.19-26
    • /
    • 2010
  • Batch experiments were conducted to investigate growth and nutrient removal performance of microalgae Chlorella vulgaris by using piggery wastewater in different concentration of pollutants and the common growth models (logistic, Gompertz and Richards) were applied to compare microalgal growth parameters. Removal of nitrogen (N) and phosphorus (P) by Chlorella vulgaris showed correlation with biomass increase, implying nutrient uptake coupled with microalgae growth. The higher the levels of suspended solids (SS), COD and ammonia nitrogen were in the wastewater, the worse growth of Chlorella vulgaris was observed, showing the occurrence of growth inhibition in higher concentration of those pollutants. The growth parameters were estimated by non-linear regression of three growth curves for comparative analyses. Determination of growth parameters were more accurate with population as a variable than the logarithm of population in terms of R square. Richards model represented better fit comparing with logistic and Gompertz model. However, Richards model showed some complexity and sensitivity in calculation. In the cases tested, both logistic and Gompertz equation were proper to describe the growth of microalgae on piggery wastewater as well as easy to application.

The Use of Oyster Shell Powders for Water Quality Improvement of Lakes by Algal Blooms Removal

  • Huh, Jae-Hoon;Choi, Young-Hoon;Lee, Hyun-Jae;Choi, Woo Jeong;Ramakrishna, Chilakala;Lee, Hyoung-Woo;Lee, Shin-Haeng;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • In this year, Koreans have a shortage in agricultural and drinking water due to severe algal blooms generated in major lakes. Waste oyster shells were obtained from temporary storage near the workplace at which oysters were separated from their shells. Heating ($1000^{\circ}C$ for 1 h in air) was employed to convert raw oyster shell powders into calcium oxide powders that reacted efficiently with phosphorus and nitrogen to remove algal blooms from eutrophicated wastewater. As the dispersed amount of heated oyster shell powders was increased, water clarity and visual light penetration were improved. Coagulation, precipitation and carbonation process of the heated oyster shell powders in a water purifier facilitated removal of eutrophication nutrient such as phosphorus and nitrogen, which is both beneficial and economically viable. $CO_2$ implantation by carbonation treatment not only produced thermodynamically stable CaO in oyster shells to derive precipitated calcium carbonate (PCC) but also accelerated algal removal by activation of coagulation and precipitation process. The use of oyster shell powders led to a mean reduction of 97% in total phosphate (T-P), a mean reduction of 91% in total nitrogen (T-N) and a maximum reduction of 51% in chemical oxygen demand (COD), compared with the total pollutant load of raw algal solution. Remarkable water quality improvement of algal removal by heated oyster shell powders and PCC carbonation treatment will allow utilization as water resources to agricultural or industrial use.

A Study on the Quality Improvement of Secondary Treatment Effluent Utilize the Natural Purification Method (자연정화공법을 이용한 2차 하수처리수의 수질 개선에 관한 연구)

  • Ahn, Tae Woong;Choi, I Song;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.2
    • /
    • pp.79-87
    • /
    • 2009
  • This study was performed for the application of porous concrete blocks and aquatic plants for the water purification in small urban stream. This study investigated the ability of water purification according to various environments, algae and aquatic plants. When the porous concrete was used as contact media, the average removal efficiencies of SS, BOD and COD were 85~95%, 50~60% and 65~75%, respectively. Also, when the porous concrete and aquatic plants was used the average removal efficiency of SS, BOD and COD were 90~95%, 60~70% and 70~80%, respectively. As the results, average removal efficiency of total nitrogen, at the condition of the porous concrete and aquatic plants, was about 40-50%, then, that of total phosphorus was about 60-70%.

A study on the evaluation of phosphate removal efficiency using Fe-coated silica sand (철 코팅 규사의 인산이온 제거 효율 평가 연구)

  • Jo, Eunyoung;Kim, Younghee;Park, Changyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.521-527
    • /
    • 2017
  • Phosphorus is one of the limiting nutrients for the growth of phytoplankton and algae and is therefore one of leading causes of eutrophication. Most phosphorous in water is present in the form of phosphates. Different technologies have been applied for phosphate removal from wastewater, such as physical, chemical precipitation by using ferric, calcium or aluminum salts, biological, and adsorption. Adsorption is one of efficient method to remove phosphates in wastewater. To find the optimal media for phosphate removal, physical characteristics of media was analysed, and the phosphate removal efficiency of media (silica sand, slag, zeolite, activated carbon) was also investigated in this study. Silica sand showed highest relative density and wear rate, and phosphate removal efficiency. Silica sand removed about 36% of phosphate. To improve the phosphate removal efficiency of silica sand, Fe coating was conducted. Fe coated silica sand showed 3 times higher removal efficiency than non-coated one.

Mass Cultivation of Botryococcus braunii for the Advanced Treatment of Swine Wastewater and Lipid Production in a Photobioreactor (축산폐수의 고도처리 및 지질생산을 위한 Botryococcus branuii의 대량배양)

  • 이석준;김성빈;김희식;권기석;윤병대;오희목
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.2
    • /
    • pp.166-171
    • /
    • 1999
  • This study was conducted to investigate the removal rate of nitrogen and phosphorus, and lipid production from a swine wastewater by Botryococcus braunii UTEX 572 in an outdoor photobioreactor. B. braunii successfully predominated in competition with bacteria and other algae, especially Oscillatoria, which were grown spontaneously in a secondary-treated swine wastewater, under the conditions of incubation temperature at $25^{\circ}C$ and increased inoculum amount at 287mg/l. There was a significant relationship between dry weight of B. braunii and absorbance of culture solution at 680mn(r2=0.967), suggesting that the latter is as good as the former commonly used for the measurement of algal biomass which is considerably time-consuming. The removal rates of COD, TOC, total nitrogen, and total phosphorus from the swine wastewater were 33.2$\pm$2.6% and 32.8$\pm$3.2, respectively, which showing no different between them. These results suggested that the mass cultivation of B. braunii in an outdoor photobioreactor could be used for the advanced treatment of swine wastewater and lipid production.

  • PDF

Effects of sodium bicarbonate as an inorganic carbon source on the growth of scenedesmus dimorphus (무기탄소원으로서의 NaHCO3가 미세조류 Scenedesmus dimorphus의 성장에 미치는 영향 평가)

  • Joo, Sung-Jin;Zhang, Shan;Choi, Kyoung Jin;Lee, SeokMin;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.5
    • /
    • pp.555-560
    • /
    • 2014
  • This study investigates the effect of sodium bicarbonate ($NaHCO_3$) on growth of S.dimorphus. $NaHCO_3$ concentration was varied from 0 to 2 g-C/L. As a result, the increase in concentration of $NaHCO_3$ up to 1.5 g-C/L increased dry weight of algae. The highest specific growth rate of S. dimorphus was $0.36day^{-1}$ which was obtained at concentration of 0.5 g-C/L $NaHCO_3$. pH showed a large variation range at the concentrations lower than 0.5 g-C/L $NaHCO_3$ whereas inorganic carbon, nitrate and phosphorus removal rates were almost same at the concentrations higher than 0.5 g-C/L $NaHCO_3$ (0.75, 1, 1.25, 1.5, 2 g-C/L $NaHCO_3$). Their average inorganic carbon, nitrate and phosphorus removal rate were 70 mg-C/L/d, 11.3 mg-N/L/d, and 1.6 mg-P/L/d, respectively. Thus, $NaHCO_3$ didn't effect on inorganic carbon, nitrate and phosphorus removal rate of S. dimorphus.

Selection of Microalgae for Advanced Treatment of Swine Wastewater and Optimization of Treatment Condition. (축산폐수의 3차 처리를 위한 미세조류의 선별 및 처리조건의 최적화)

  • 김성빈;이석준;김치경;권기석;윤병대;오희목
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.1
    • /
    • pp.76-82
    • /
    • 1998
  • The feasibility of algae as means of removing nitrogen and phosphorus from secondary treated swine wastewater was studied. Among the tested 7 species of Chlorella vulgaris (UTEX 265), Chlorella sp. GE 21, Botryococcus braunii (UTEX 572), Botryococcus sp. GE 24, Scenedesmus quadricauda, Phormidium sp. GE 2, and Spirulina maxima (UTEX 2342), C. vulgaris was selected for its fast growth and abilities to remove nitrogen and phosphorus and to produce algal biomass from swine wastewater. C. vulgaris grew well at 35$^{\circ}C$, and the optimum initial pH for growth was 8.0. In the effect of light intensity, the growth of C. vulgaris was limited under a light intensity of less than 40 ${\mu}$E/$m^2$/s. The secondary treated swine wastewater contained 58.7 mg/l of total nitrogen and 14.7 mg/l of total phosphorus, and was diluted to 75, 50, and 25% with groundwater to be treated. Nitrogen and phosphorus were removed by C. vulgaris in all diluted swine wastewaters among which the most effective removal was in 75% swine wastewater (swine wastewater:groundwater=3:1). There was a tendency of linear increase in nitrogen and phosphorus removal time with increasing concentration of swine wastewater. Under the optimized culture condition, total nitrogen and total phosphorus were effectively removed to 95.3% and 96.0%, respectively, in 25% swine wastewater after 4-day incubation.

  • PDF

Process Development of Algae Culture for Livestock Wastewater Treatment Using Fiber-Optic Photobioreactor (축산폐수 처리를 위한 광섬유 생물반응기를 이용한 조류 배양 공정 개발)

  • 최정우;김영기;류재홍;이우창;이원홍;한징택
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.14-21
    • /
    • 2000
  • In this study, algae cultivation using the photobioreactor has been applied to remove the nitrogen and phosphorus compounds in the wastewater of the livestock industry. The optimal ratio of nitrate and ortho-phosphate concentration was found for the enhancement of removal efficiency. To achieve the high density culture of algae, the photobioreactor consisted of optical fibers wes developed to get the sufficient light intensity. The light could be illuminated uniformly from light source to the entire reactor by the optical fibers. The structured kinetic model was proposed to describe the growth rate, consumption rate of nitrates and ortho-phosphates in algae culture. The self-organizing fuzzy logic controller incorporated with genetic algorithm was constructed to control the semi-continuous wastewater treatment system. The proposed fuzzy logic controller was applied to maintain the nitrated concentration at the given set-point with the control of wastewater feeding rate. The experimental results showed that the self-organizing fuzzy logic controller could keep the nitrate concentration and enhance algae growth.

  • PDF