• 제목/요약/키워드: Phosphorus adsorption

검색결과 103건 처리시간 0.027초

인산시용량(燐酸施用量) 결정기준(決定基準)으로서의 최대인산흡착량(最大燐酸吸着量) (Langmuir phosphorus adsorption maximum as a criterion for determination of rate of phosphorus application)

  • 류인수;조인상
    • 한국토양비료학회지
    • /
    • 제10권2호
    • /
    • pp.93-97
    • /
    • 1977
  • 최선(最善)의 인산시용량(燐酸施用量) 결정기준(決定基準)을 찾고저 기경지(旣耕地), 미개간지(未開墾地) 및 제주(濟州) 화산회토양(火山灰土壤)을 공시(供試)하여 충분(充分)한 관수조건하(灌水條件下)에서 콩을 재배(裁培)한 pot시험결과(t試驗結果)를 요약(要約)하면 다음과 같다. 1. 토양별(土壤別) 인산흡착력(燐酸吸着力)의 차이(差異)를 가장 잘 나타내는 지표(指標)는 Langmuir 최대인산흡착량(最大燐酸吸着量)이었다. 2. 최대인산흡착량(最大燐酸吸着量)는 초산(酢酸)암모니움 침출(浸出) Al 함량(含量)에 비례하나 제주도(濟州道) 토양(土壤)에서는 Al외(外)에 유기물함량(有機物含量)의 영향(影響)이 컸다. 3. 최대수량(最大收量)을 얻기 위한 인산시용량(燐酸施用量)은 인산최대흡착량(燐酸最大吸着量)의 30~50% 범위에 있었다.

  • PDF

수중의 인 제어기술 개발 (Development of Control Technology of Phosphorus in Water)

  • 김경태;강선홍
    • 상하수도학회지
    • /
    • 제13권3호
    • /
    • pp.56-60
    • /
    • 1999
  • In this study the feasibility of usage of raw sludge (sludge from water treatment plant) and chalk from schools and institutes was investigated to remove the phosphorus in water and wastewater. In this study phosphorus removal efficiencies of sludge and chalk were investigated by changing various factors. The time to reach the equilibrium using chalk and raw sludge under different pHs was obtained. Based on this result, Freudlich adsorption isotherm was applied. Results showed that a portion of phosphorus was removed by adsorption to chalk and raw sludge. The phosphorus removal efficiency using calcinated chalk was about three times higher than that of chalk. It means that some portion of $CaCO_3$ contained in chalk was converted to CaO by calcination and this was proved by X-ray diffraction experiment. About 90% phosphorus removal was observed using sludge and calcinated chalk respectively while about 20% phosphorus removal efficiency was achieved using chalk from the water sample in Lake Sihwa.

  • PDF

호소 퇴적층으로부터 용출되는 인 제거를 위한 황토 복합체 개발 (Development of Loess Composite for the Control of Phosphorus Release from Lake Sediments)

  • 신관우;김금용;이상일
    • 한국물환경학회지
    • /
    • 제28권1호
    • /
    • pp.50-56
    • /
    • 2012
  • In this study, loess composites, loess with lanthanum and with aluminum, were made and evaluated for treatment of phosphorus removal in natural water system. Desiccation method for production of loess composite was superior to centrifugation method in obtaining high concentrated composites of lanthanum and aluminum. Washing of loess lanthanum composite by water did not deteriorat the lanthanum concentration in the composite, but this lowered the aluminum concentration of loess aluminum composite. Total of 15 and 37.5% of aluminum contents were removed after first washing treatment in aluminum loess of 0.05% and 0.1% respectively. However, no more aluminum loss was monitored with increase of washing times. Phosphorus removal efficiencies were not decreased with washed loess aluminum composite. Phosphorus removal was successfully achieved by adsorption of phosphate to loess composite at pH range of 5.0 ~ 8.0. Freundlich and Langmuir adsorption isotherm was observed in the adsorption of phosphate for loess composite. Dosages of 0.05% and 0.1% lanthanum composite for 95% of phosphorus removal could reduce its usage amount to 25% and 50%, respectively, comparing with dosage of loess alone. Dosages of 0.05% and 0.1% aluminum composite could reduce its usage amount to 48% and 63%, respectively.

알루미늄염에 의한 인 제거 시 pH와 초기 인 농도의 영향 (Effect of pH and Initial Phosphorus Concentration on Phosphorus Removal by Aluminum Salts)

  • 박정원;곽효은;민소진;정형근;박병규
    • 상하수도학회지
    • /
    • 제30권2호
    • /
    • pp.123-130
    • /
    • 2016
  • Phosphorus (P) removal by aluminum sulfate solution was investigated with varying pH and initial P concentrations. P removal was the highest at around pH 6. The pH range where P removal occurred was slightly wider at higher initial P concentrations. Compared to theoretical calculations, it was confirmed that $AlPO_4$ precipitation was the main reason for P removal at low pH. At high pH, where there should be no $AlPO_4$ precipitates, the P removal by adsorption of amorphous $Al(OH)_3$ precipitates was experimentally observed. The P removal by adding amorphous $Al(OH)_3$ precipitates prepared before the adsorption experiments, however, was lower than that by injecting aluminum sulfate solution because the prepared precipitates became larger, leading to less specific surface area available for adsorption. Ions other than sulfate had little influence on P removal.

수처리용 EM 담체의 물리적 특성 평가 (Evaluation of Physical Property on EM Media for Water Treatment)

  • 배수현;라덕관
    • 한국환경기술학회지
    • /
    • 제19권6호
    • /
    • pp.493-502
    • /
    • 2018
  • 수계의 조류발생 원인물질인 질소와 인을 제거할 목적으로 수처리용 EM 담체를 개발한 후, 물리적 특성에 대하여 검토한 결과는 다음과 같다. EM 담체를 제조하기 위한 점토 : 제올라이트 : 질석 : 활성탄의 배합비율은 10 : 2.5 : 0.1 : 2, 소성온도는 $700^{\circ}C$가 적합하였다. EM 담체의 공극률과 밀도는 39.98 %와 $1.13kg/m^3$, 질소와 인의 흡착효율은 69.3 %와 38.9 %, 증류수 담체의 공극률과 밀도는 37.80 %와 $1.11kg/m^3$, 질소와 인의 흡착효율은 62.5 %와 37.8 %로 나타났다. EM 담체가 증류수 담체에 비하여 질소의 흡착효율은 6.8 %, 인의 흡착효율은 1.1 %가 크게 나타났다. 담체의 질소와 인에 대한 흡착특성은 Freudlich 흡착등온식으로 표현이 가능하였다. 소성시간의 변화는 EM 담체를 성형할 때 질소의 인의 흡착효율에는 큰 영향을 미치지 못하였으나 담체의 강도에는 영향을 미칠 것으로 판단된다. 질소의 제거효율은 소성시간 4시간, 인의 제거효율은 소성시간 3시간에서 가장 우수하였다.

고농도 ge fraction을 갖는 $Si_{1-x}Ge_{x}$ 막의 epitaxial growth에 대한 in-situ phosphorus doping 효과 (In-situ phosphorus doping effect on epitaxial growth of $Si_{1-x}Ge_{x}$ film with high ge fraction)

  • 이철진;박정훈;김성진
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.437-440
    • /
    • 1998
  • We studied phosphorus doping effect on the epitaxial growth of $Si_{1-x}Ge_{x}$ film with high Ge fraction on Si substates at 550.deg. C by LPCVD. In a low $Ph_{3}$ partial pressure region such as below 1.25 mPa, the phosphorus dopant concentration increased linearly with increasing $PH_{3}$ partial pressure while the deposition rate and the Ge fraction were constant. In a higher $PH_{3}$ partial pressure region, the phosphorus dopant concentration and the deposition rate decreased, while the Ge fraction slightly increased. The deposition arate and the Ge fraction increased with increasing $GeH_{4}$ partial pressure while the phophours dopant concentration decreased. But the increasing rate of Ge fraction with incrasing $PH_{3}$ partial pressure was reduced at a high $GeH_{4}$ partial pressure. According to test results, it suggests that high surface coverage of phosphorus atoms suppress both the $SiH_{4}$ adsorption/reasction and the $GeH_{4}$ adsorption/reaction on the surfaces, and the effect is more stronger on $SiH_{4}$ than on $GeH_{4}$. In a higher $PH_{3}$ partial pressure region, the epitaxial growth is largely controlled by surface coverage effect of phosphorus atoms. The phosphorus surface coverage was slimited at a high $GeH_{4}$ partial pressure because adsorbed Ge atoms effectively suppresses the adsorption of phosphorus atoms.

  • PDF

Phosphorus Removal in Wastewater Using Activated Ca-Loess Complex

  • 강성철;이병호
    • 상하수도학회지
    • /
    • 제26권5호
    • /
    • pp.713-721
    • /
    • 2012
  • 강이나 호수로 유입되는 인(P)이 종종 부영양화의 가장 큰 제한요소로 작용한다. 그런데 하수처리장의 방류수가 자연수계에 인의 중요한 공급처로 작용하는 경우가 많기 때문에 하수처리장의 최종 처리수에서 인의 제거가 요구된다. 하수에서 인을 제거할 수 있는 많은 기술 중에서, 활성 칼슘-황토의 복합체를 이용한 흡착기술을 연구하였다. 칼슘을 황토에 첨가하여 인의 흡착 용량과 흡착강도를 증가시켰다. 칼슘을 첨가한 황토를 최적 온도로 밝혀진 $400^{\circ}C$의 고온에서 활성화시켰다. $400^{\circ}C$ 미만에서 활성화시킨 칼슘-황토는 하수처리 공정의 활성칼슘-황토 복합체를 이용한 처리조에 적용하기엔 강도가 부족하였다. 반면 $400^{\circ}C$ 초과 온도에서 활성화시킨 칼슘-황토 복합체는 복합체 표면이 유리화되어 흡착용량이 감소하였다. 활성칼슘-황토 복합체는 표면에 충분한 기공이 발달하지 못하여 인의 흡착용량에 한계는 있으나 칼슘을 첨가하였기 때문에 흡착강도는 높았다. 활성칼슘-황토는 입자형 복합체로 만들어졌다. 제조된 복합체를 흡착칼럼에 채워 하수처리공정에 적용하였다. 활성칼슘-황토의 복합체를 충진한 칼럼을 파일롯트 플랜트에 적용한 결과 0.5 mg/l의 인의 농도를 0.1 mg/l로 낮출 수 있었고, 이온성 인을 4개월의 운전기간 동안 완전하게 흡착시켜 제거할 수 있었다.

해양 퇴적물에서 인 용출 차단을 위한 반응성 피복 소재로서 제강슬래그의 적용성 검토 (Applicability Assessment of Steel Slag as Reactive Capping Material for Blocking Phosphorus Release from Marine Sediment)

  • 조성욱;박성직
    • 한국농공학회논문집
    • /
    • 제56권3호
    • /
    • pp.11-17
    • /
    • 2014
  • We investigated the applicability of steel slag as a capping material in order to minimize phosphorus(P) release into seawater. Steel slag is a byproduct from the iron and steel industries and the use of steel slag has some advantages in respect of both cost and environmental concern. P removal by steel slag were studied in a batch system with respect to changes in contact time and initial concentration. Kinetic adsorption data were described well by pseudo 2nd order model, indicating rate limiting step for P adsorption to steel slag is chemical sorption. Equilibrium adsorption data fitted well to Langmuir isotherm model which describes for single layer adsorption. The maximum P adsorption capacity of steel slag was 7.134 mg-P/L. Increasing the depth of steel slag produced a positive effect on interruption of P release. More than 3 cm of steel slag was effective for blocking P release and 5 cm of steel slag was recommended as the depth for capping of P contaminated marine sediments. Increasing P concentration and flow rate had a negative effect on P removal ratio. It was concluded that the steel slag has a potential capping material for blocking P release from marine sediments.

질소 및 인에 대한 흡착특성이 다른 여재를 사용한 지하흐름형 인공습지 효율 평가 (Performance Evaluation of Subsurface-flow Wetland with Media Possessing Different Adsorption Capacities for Nitrogen and Phosphorus)

  • 서준원;장형석;강기훈
    • 한국물환경학회지
    • /
    • 제23권1호
    • /
    • pp.155-160
    • /
    • 2007
  • Constructed wetland has been widely used for the treatment of sewage, stormwater runoff, industrial wastewater, agricultural runoff, acid mine drainage and landfill leachate. For the removal of nitrogen and phosphorus, uptake by plants and adsorption to media material are the major processes, and, therefore, the selection of media with specific adsorption capacity is the critical factor for the optimal design of wetland along with the selection of appropriate plant species. In this study, two media materials (loess bead and mixed media) possessing different adsorption characteristics for ammonium and phosphate were selected, and their adsorption characteristics were evaluated. In addition, the performance of subsurface-flow wetland systems employing these media was evaluated in both batch and continuous flow systems. With LB medium, beter phosphorus removal was observed, while better ammonia removal was obtained with MM medium. In addition, enhanced removal efficiencies were observed in the wetland systems employing both media and aquatic plants, mainly due to the better environment for microbial growth. As a result, appropriate selection or combination of media with respect to the inflow water quality maybe important factors for the successful design and operation of wetland systems.

하천 내 유사와 인 이동에 관한 모델링 (Modeling of Sediment and Phosphorous Transport in a River Channel)

  • 김경현
    • 한국물환경학회지
    • /
    • 제26권2호
    • /
    • pp.332-342
    • /
    • 2010
  • A model has been developed to investigate in-river sediment and phosphorus dynamics. This advective-dispersive model is coupled with hydrodynamics and sediment transport submodels to simulate suspended sediment, total dissolved phosphorus, total phosphorus, and particulate phosphorus concentrations under unsteady flow conditions. It emphasizes sediment and phosphorus dynamics in unsteady flow conditions, in which the study differs from many previous solute transport studies, conducted in relatively steady flow conditions. The diffusion wave approaximation was employed for unsteady flow simulations. The first-order adsorption and linear adsorption isotherm model was used on the basis of the three-layered riverbed submodel with riverbed sediment exchange and erosion/deposition processes. Various numerical methods were tested to select a method that had minimal numerical dispersion under unsteady flow conditions. The responses of the model to the change of model parameter values were tested as well.