• 제목/요약/키워드: Phosphorous doping

검색결과 28건 처리시간 0.026초

Highly Doped Nano-crystal Embedded Polymorphous Silicon Thin Film Deposited by Using Neutral Beam Assisted CVD at Room Temperature

  • 장진녕;이동혁;소현욱;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.154-155
    • /
    • 2012
  • The promise of nano-crystalites (nc) as a technological material, for applications including display backplane, and solar cells, may ultimately depend on tailoring their behavior through doping and crystallinity. Impurities can strongly modify electronic and optical properties of bulk and nc semiconductors. Highly doped dopant also effect structural properties (both grain size, crystal fraction) of nc-Si thin film. As discussed in several literatures, P atoms or radicals have the tendency to reside on the surface of nc. The P-radical segregation on the nano-grain surfaces that called self-purification may reduce the possibility of new nucleation because of the five-coordination of P. In addition, the P doping levels of ${\sim}2{\times}10^{21}\;at/cm^3$ is the solubility limitation of P in Si; the solubility of nc thin film should be smaller. Therefore, the non-activated P tends to segregate on the grain boundaries and the surface of nc. These mechanisms could prevent new nucleation on the existing grain surface. Therefore, most researches shown that highly doped nc-thin film by using conventional PECVD deposition system tended to have low crystallinity, where the formation energy of nucleation should be higher than the nc surface in the intrinsic materials. If the deposition technology that can make highly doped and simultaneously highly crystallized nc at low temperature, it can lead processes of next generation flexible devices. Recently, we are developing a novel CVD technology with a neutral particle beam (NPB) source, named as neutral beam assisted CVD (NBaCVD), which controls the energy of incident neutral particles in the range of 1~300eV in order to enhance the atomic activation and crystalline of thin films at low temperatures. During the formation of the nc-/pm-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. In the case of phosphorous doped Si thin films, the doping efficiency also increased as increasing the reflector bias (i.e. increasing NPB energy). At 330V of reflector bias, activation energy of the doped nc-Si thin film reduced as low as 0.001 eV. This means dopants are fully occupied as substitutional site, even though the Si thin film has nano-sized grain structure. And activated dopant concentration is recorded as high as up to 1020 #/$cm^3$ at very low process temperature (< $80^{\circ}C$) process without any post annealing. Theoretical solubility for the higher dopant concentration in Si thin film for order of 1020 #/$cm^3$ can be done only high temperature process or post annealing over $650^{\circ}C$. In general, as decreasing the grain size, the dopant binding energy increases as ratio of 1 of diameter of grain and the dopant hardly be activated. The highly doped nc-Si thin film by low-temperature NBaCVD process had smaller average grain size under 10 nm (measured by GIWAXS, GISAXS and TEM analysis), but achieved very higher activation of phosphorous dopant; NB energy sufficiently transports its energy to doping and crystallization even though without supplying additional thermal energy. TEM image shows that incubation layer does not formed between nc-Si film and SiO2 under later and highly crystallized nc-Si film is constructed with uniformly distributed nano-grains in polymorphous tissues. The nucleation should be start at the first layer on the SiO2 later, but it hardly growth to be cone-shaped micro-size grains. The nc-grain evenly embedded pm-Si thin film can be formatted by competition of the nucleation and the crystal growing, which depend on the NPB energies. In the evaluation of the light soaking degradation of photoconductivity, while conventional intrinsic and n-type doped a-Si thin films appeared typical degradation of photoconductivity, all of the nc-Si thin films processed by the NBaCVD show only a few % of degradation of it. From FTIR and RAMAN spectra, the energetic hydrogen NB atoms passivate nano-grain boundaries during the NBaCVD process because of the high diffusivity and chemical potential of hydrogen atoms.

  • PDF

용액 공정을 통한 도핑된 실리콘 나노입자의 합성과 특성 (Synthesis and Characterization of Doped Silicon Nanoparticles by a Solution Route)

  • 권하영;임은희;이성구;이경균
    • 공업화학
    • /
    • 제21권6호
    • /
    • pp.694-696
    • /
    • 2010
  • 용액공정을 이용하여 표면에 알킬기를 도입하고, 붕소(boron) 또는 인(phosphorous)으로 도핑된 실리콘 나노 입자를 합성하였다. 나노 입자의 합성 여부 및 입자크기는 핵자기공명분광기(NMR), 적외선분광기(FT-IR), 자외선가시광선분광기(UV-Vis), 인광분광기(PL)를 이용하여 분석하였다. 마이크로웨이브 소결기를 이용하여 표면의 알킬기를 제거하고, 결정성을 갖는 필름을 제작하였다. 필름의 조각은 $200{\mu}m$ 정도의 크기를 가지며 큐빅구조를 가지고 있다는 것을 전자주사현미경(FE-SEM)과 투과전자현미경(FR-TEM)으로 확인할 수 있었다. 필름의 전도도는 도핑 타입을 통해 조절할 수 있었다.

고온용 압력센서 응용을 위한 in-situ 인(P)-도핑 LPCVD Poly Si 전극 (In-situ P-doped LPCVD Poly Si Films as the Electrodes of Pressure Sensor for High Temperature Applications)

  • 최경근;기종;이정윤;강문식
    • 센서학회지
    • /
    • 제26권6호
    • /
    • pp.438-444
    • /
    • 2017
  • In this paper, we focus on optimization of the in-situ phosphorous (P) doping of low-pressure chemical vapor deposited (LPCVD) poly Si resistors for obtaining near-zero temperature coefficient of resistance (TCR) at temperature range from 25 to $600^{\circ}C$. The deposited poly Si films were annealed by rapid thermal anneal (RTA) process at the temperature range from 900 to $1000^{\circ}C$ for 90s in nitrogen ambient to relieve intrinsic stress and decrease the TCR in the poly Si layer and get the Ohmic contact. After the RTA process, a roughness of the thin film was slightly changed but the grain size and crystallinity of the thin film with the increase in anneal temperature. The film annealed at $1,000^{\circ}C$ showed the behavior of Schottky contact and had dislocations in the films. Ohmic contact and TCR of $334.4{\pm}8.2$ (ppm/K) within 4 inch wafer were obtained in the measuring temperature range of 25 to $600^{\circ}C$ for the optimized 200 nm thick-poly Si film with width/length of $20{\mu}m/1,800{\mu}m$. This shows the potential of in-situ P doped LPCVD poly Si as a resistor for pressure sensor in harsh environment applications.

Doping Controlled Emitter with a Transparent Conductor for Crystalline Si Solar Cells

  • 김민건;김현엽;최우진;이준신;김준동
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.590-590
    • /
    • 2012
  • A transparent conducting oxide (TCO) layer was applied in crystalline Si (c-Si) solar cells without use of the conventional SiNx-coating. A high quality indium-tin-oxide (ITO) layer was directly deposited on an emitter layer of a Si wafer. Three different types of emitters were formed by controlling the phosphorous diffusion condition. A light-doped emitter forming a thinner emitter junction showed an improved photoconversion efficiency of 14.1% comparing to 13.2% of a heavy-doped emitter. This was induced by lower recombination within a narrower depletion region of the light-doped emitter. In the aspect of light management, the intermediate refractive index of ITO is effective to reduce the light reflection leading the enhanced carrier generation in a Si absorber. For the electrical aspect, the ITO layer serves as an efficient electrical conductor and thus relieves the burden of high contact resistance of the light-doped emitter. Additionally, the ITO works as a buffer layer of Ag and Si and certainly prevents the shunting problem of Ag penetration into Si emitter region. It discusses an efficient design scheme of TCO-embedded emitter Si solar cells.

  • PDF

Bi-CMOS공정중 SSR 채널 형성을 위한 $Sb_2O_3$ 빔튜닝 방법 연구 (A Study of $Sb_2O_3$ Beam Tuning for SSR Channel on Bi-CMOS Process)

  • 최민호;김남훈;김상용;장의구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.369-372
    • /
    • 2004
  • The characteristics of antimony implants are relatively well-known. Antimony has lower diffusion coefficient, shorter implantation range, and smaller scattering as compared with conventional dopants such as phosphorous and arsenic. It has been commonly used in the doping of buried layer in Bi-CMOS process. In this paper, characteristics and appropriate condition of monitoring in antimony implant beam tuning using $Sb_2O_3$ were investigated to get a reliable process. TW(Thema Wave) and Rs(Sheet Resistance) test were carried out to set up condition of monitoring for stable operation through the periodic inspection of instruction condition. The monitoring was progressed at the point that the slant of Rs varied significantly to investigate the variation of instruction accurately.

  • PDF

표면 텍스쳐링 크기와 밀도가 후면 전극 실리콘 태양전지에 미치는 영향 (A effect of the back contact silicon solar cell with surface texturing size and density)

  • 장왕근;장윤석;박정호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.112.1-112.1
    • /
    • 2011
  • The back contact solar cell (BCSC) has several advantages compared to the conventional solar cell since it can reduce grid shadowing loss and contact resistance between the electrode and the silicon substrate. This paper presents the effect of the surface texturing of the silicon BCSC by varying the texturing depth or the texturing gap in the commercially available simulation software, ATHENA and ATLAS of the company SILVACO. The texturing depth was varied from $5{\mu}m$ to $150{\mu}m$ and the texturing gap was varied from $1{\mu}m$ to $100{\mu}m$ in the simulation. The resulting efficiency of the silicon BCSC was evaluated depending on the texturing condition. The quantum efficiency and the I-V curve of the designed silicon BCSC was also obtained for the analysis since they are closely related with the solar cell efficiency. Other parameters of the simulated silicon BCSC are as follows. The substrate was an n-type silicon, which was doped with phosphorous at $6{\times}10^{15}cm^{-3}$, and its thickness was $180{\mu}m$, a typical thickness of commercial solar cell substrate thickness. The back surface field (BSF) was $1{\times}10^{20}\;cm^{-3}$ and the doping concentration of a boron doped emitter was $8.5{\times}10^{19}\;cm^{-3}$. The pitch of the silicon BCSC was $1250{\mu}m$ and the anti-reflection coating (ARC) SiN thickness was $0.079{\mu}m$. It was assumed that the texturing was anisotropic etching of crystalline silicon, resulting in texturing angle of 54.7 degrees. The best efficiency was 25.6264% when texturing depth was $50{\mu}m$ with zero texturing gap in case of low texturing depth (< $100{\mu}m$).

  • PDF

50 ㎛ 기판을 이용한 a-Si:H/c-Si 이종접합 태양전지 제조 및 특성 분석 (a-Si:H/c-Si Heterojunction Solar Cell Performances Using 50 ㎛ Thin Wafer Substrate)

  • 송준용;최장훈;정대영;송희은;김동환;이정철
    • 한국재료학회지
    • /
    • 제23권1호
    • /
    • pp.35-40
    • /
    • 2013
  • In this study, the influence on the surface passivation properties of crystalline silicon according to silicon wafer thickness, and the correlation with a-Si:H/c-Si heterojunction solar cell performances were investigated. The wafers passivated by p(n)-doped a-Si:H layers show poor passivation properties because of the doping elements, such as boron(B) and phosphorous(P), which result in a low minority carrier lifetime (MCLT). A decrease in open circuit voltage ($V_{oc}$) was observed when the wafer thickness was thinned from $170{\mu}m$ to $50{\mu}m$. On the other hand, wafers incorporating intrinsic (i) a-Si:H as a passivation layer showed high quality passivation of a-Si:H/c-Si. The implied $V_{oc}$ of the ITO/p a-Si:H/i a-Si:H/n c-Si wafer/i a-Si:H/n a-Si:H/ITO stacked layers was 0.715 V for $50{\mu}m$ c-Si substrate, and 0.704 V for $170{\mu}m$ c-Si. The $V_{oc}$ in the heterojunction solar cells increased with decreases in the substrate thickness. The high quality passivation property on the c-Si led to an increasing of $V_{oc}$ in the thinner wafer. Short circuit current decreased as the substrate became thinner because of the low optical absorption for long wavelength light. In this paper, we show that high quality passivation of c-Si plays a role in heterojunction solar cells and is important in the development of thinner wafer technology.

인의 도핑으로 인한 실리콘산화물 속 실리콘나노입자의 광-발광현상 증진 및 억제 (Enhancement and Quenching Effects of Photoluminescence in Si Nanocrystals Embedded in Silicon Dioxide by Phosphorus Doping)

  • 김준곤;우형주;최한우;김기동;홍완
    • 한국진공학회지
    • /
    • 제14권2호
    • /
    • pp.78-83
    • /
    • 2005
  • 지난 10년 동안 유전체 내부에 형성된 나노미터 크기의 규소알갱이는 발광센터로서 주목 받아왔다 나노미터 크기인 결정질 규소의 엑시토닉 전자-홀의 쌍들이 발광결합에 기여한다고 여겨진다. 그러나 규소결정에 존재하는 여러가지 결함들은 비발광 천이의 경로가 되어 나노규소결접립의 발광천이와 경쟁하여 발광효율을 저하시키는 요인이 된다. 이러한 결정 결함들은 고온 열처리과정에서 대부분 소멸되나 $1000^{\circ}C$ 이상의 공정 에서도 나노규소와 유전체의 계면에 존재하는 결함들은 나노규소결정립의 발광을 억제하게 된다. 일반적으로 수소로서 규소결정립의 계면을 마감처리하게 되면 규소결정립의 발광효율이 획기적으로 향상되나 불행하게도 매질 내 수소의 높은 이동성으로 말미암아 후속 열처 리 과정에서 수소마감효과는 쉽게 손실된다. 따라서 본 연구에서는 온도가역적인 수소 대신 인을 이온주입 방법으로 첨가하여 수소와 같은 계면 마감효과를 얻으며 또한 후속 고온공정 에 대한 내구력을 증대시켰다. 모재인 산화규소 기판에 400keV, $1\times10^{17}\; Si/cm^2$와 그 주위에 균일한 함량을 도핑하기 위하여 다중에너지의 인을 주입하였다. 규소와 인을 이온주입 후 Ar 분위기에서 $1100^{\circ}C$ , 두 시간의 후열처리를 통하여 규소결정립을 형성하였으며 향상된 내열효과를 시험하기 위하여 Ar 분위기에서 $1000^{\circ}C$까지 열처리하였다. 인으로 마감된 나노미터 크기인 규소 결정립의 향상된 광-발광(PL)효과와 감쇄시간, 그리고 발광파장의 변화에 대하여 논의하였다.