• Title/Summary/Keyword: Phosphorescent

검색결과 260건 처리시간 0.023초

도로의 축광차선 도료 개발을 위한 축광안료 최적 배합비 산정에 관한 연구 (Determination of Optimal Mixing Ratio of Phosphorescent Pigment to Develop Phosphorescent Paint for Road Line Marking)

  • 이영문;김상태;김흥래
    • 한국도로학회논문집
    • /
    • 제17권5호
    • /
    • pp.67-73
    • /
    • 2015
  • PURPOSES : This study was conducted to derive the optimum mixing ratio of phosphorescent pigment for the development of phosphorescent line marking. METHODS: In this study, we utilized a literature review and case study methodology, to describe the domestic and foreign state of practice for the production and mixing of phosphorescent pigment for use in line marking. The optimal mixing ratio was derived by comparing the reduction in luminance over time for the various phosphorescent pigment mixing ratios identified in the literature. In addition, performance and construction characteristics were analyzed using field testing techniques. RESULTS : The results were as follows: 1) the results of the luminance performance standards tests showed that all of the phosphorescence test specimens satisfied the phosphorescent fire protection standard. As the phosphorescent pigment mixing ratio increased, the luminance value increased, 2) the luminance reduction rate was minimum at the mixing ratio of 50%. However, when compared to a mixing ratio 40%, a small difference was recorded, the luminance reduction rate from the mixing ratio of 40% is judged as being converged. Therefore, in view of the economic efficiency, it was determined that the optimal mixing ratio was 40%, 3) as a result of construction on the field, a mixing ratio of 40% was found to have a higher luminance value than the general line marking for up to three hours after sunset, 4) it was found that the phosphorescent line markings without glass beads spraying had a higher luminance value than the phosphorescent line markings with glass beads spraying. CONCLUSIONS : Through the results of the basic experiments of the line markings obtained by blending a phosphorescent pigment, the results could be applied to play an important role in the development of phosphorescent line marking paint technology and in establishing application planning for on-site construction characteristics.

축광 노면표시의 야간 시인성 평가를 위한 기초 연구 (Night Visibility Evaluation of Phosphorescent Road Line Markings)

  • 이용문;김상태;정왕성;김흥래
    • 한국도로학회논문집
    • /
    • 제18권4호
    • /
    • pp.69-75
    • /
    • 2016
  • PURPOSES : In this study, we evaluated changes in the retroreflectivity and luminance of phosphorescent road line markings with changes in glass beads and line marking thickness. METHODS : The color of line markings affects their retroreflectivity. Using a chromaticity test, we conducted the analysis of whether phosphorescent road line markings adhered to the "KS M 6080" standard. Then, we measured the dry retroreflectivity and wet retroreflectivity for various glass bead refractive indices. We conducted wet retroreflectivity test using the EN 1436 standard as the basis. We also conducted luminance tests for different glass bead refractive indices and line marking thicknesses. RESULTS : 1. Phosphorescent road line markings specimens satisfied the "KS M 6080" standard. 2. In dry retroreflectivity test, phosphorescent road line markings sprayed with glass beads satisfied the national police agency standard ($240mcd/(m^2{\cdot}Lux)$). Wet retroreflectivity test results showed that except for one type of No.1 glass beads, phosphorescent road line markings specimens sprayed with glass beads of one type of No.3 and two types of No.1 satisfied the national police agency standard ($100mcd/(m^2{\cdot}Lux)$). 3. Phosphorescent road line markings had higher retroreflectivity than non-phosphorescent road line markings in the dry condition. 4. Phosphorescent road line markings sprayed with glass beads demonstrated improved luminance. Luminance increased with higher glass bead refractive index and with increased line marking thickness. However, when the thickness crossed a certain threshold, phosphorescence ceased to increase; this is a characteristic of the phosphorescence phenomenon. CONCLUSIONS : Visibility across short distances can be ensured when phosphorescent road line markings are sprayed with glass beads, because of the retroreflection phenomenon. It is also possible to ensure far visibility using phosphorescent road line markings.

축광노면표시의 실내 및 현장 휘도 성능분석과 디지털이미지를 이용한 휘도분석 사전연구 (Performance Analysis of Laboratory and Field Luminance for Phosphorescent Line Marking and Preliminary Study of Luminance Analysis Using Digital Images)

  • 김상태;이용문;김흥래;최기주
    • 한국도로학회논문집
    • /
    • 제18권6호
    • /
    • pp.145-152
    • /
    • 2016
  • OBJECTIVES : Visibility at night can be improved by using retroreflection for short distances and phosphorescent line markings for long distances. In this study, we analyzed the characteristics of the phosphorescent line marking through a laboratory luminance test. Field performance analysis was performed through tests conducted on the road. We also examined the luminance measurement methods using the digital image obtained during the phosphorescent visibility evaluation. METHODS : In this study, the laboratory luminance test of the phosphorescent line marking was conducted using seven specimens to characterize the luminance changes according to the type of the glass beads, the thickness of the phosphorescent line marking, and the brightness and irradiation time of the light source. Phosphorescent and general line markings were made at 150 m to investigate the field luminance performance. A preliminary review of the luminance measurement methods was made using a digital image from a digital single-lens reflex (DSLR) camera. The measured luminance ratio of the general and the phosphorescent line markings was compared with the calculated luminance ratio using luminance analysis. RESULTS : Through the laboratory luminance test, it was seen that the change in luminance, which corresponds to the brightness of the light source, appears large but the influence of the thickness and irradiation time is low. The field performance test of the phosphorescent line marking conducted on the road involved measuring the luminance on the day the marking was made and 7 days after the marking was made. The luminance was found to be $190mcd/m^2$ at 30 min after sunset and approximately $10-12mcd/m^2$ 4h after sunset. The results of the luminance test were captured using a digital image for each time group. The luminance ratio of the phosphorescent line marking, when compared to that of the general line marking, showed a similar trend within a 13% maximum error. Additionally, when this luminance ratio is compared to the direct field measurement, it could be confirmed that the luminance ratio, as captured in the digital image, showed a similar tendency. CONCLUSIONS : 1) The change in luminance corresponding to the brightness of the light source is significant in comparison with that corresponding to the thickness and the irradiation time. In addition, the results of the field test for the phosphorescent line marking satisfied the phosphorescent fire protection standard. 2) We examined the validity of the luminance measurement method using a digital image and we concluded that the change in the luminance ratio shows a similar tendency in both the cases. The results can form the basis for luminance measurement methodology for the construction and maintenance of phosphorescent line markings.

청색과 적색 인광 물질을 사용한 백색 적층 OLED의 발광 특성 (Emission Characteristics of White Tandem Organic Light Emitting Diodes Using Blue and Red Phosphorescent Materials)

  • 박찬석;주성후
    • 한국표면공학회지
    • /
    • 제49권2호
    • /
    • pp.196-201
    • /
    • 2016
  • We studied white tandem organic light-emitting diodes using blue and red phosphorescent materials. Optimized white single phosphorescent OLED was fabricated using CBP : FIrpic (12 vol.%, 9 nm) / CBP : $Ir(mphmq)_2acac$ : $Ir(ppy)_3$ (1 vol.%, 1 vol.%, 1 nm) as emitting layer (EML). The single phosphorescent OLED showed maximum current efficiency of 22.5 cd/A, white emission with a Commission Internationale de l'Eclairage (CIE) coordinates of (0.342, 0.37) at $1,000cd/m^2$, and variation of CIE coordinates with ($0.339{\pm}0.008$, $0.371{\pm}0.001$) from 500 to $3,000cd/m^2$. Optimized white tandem phosphorescent OLED was fabricated using CBP : FIrpic (12 vol.%, 7 nm) / CBP : $Ir(mphmq)_2acac$ : $Ir(ppy)_3$ (1 vol.%, 1 vol.%, 3 nm) as EML. The tandem phosphorescent OLED showed maximum current efficiency of 49.2 cd/A, white emission with a CIE coordinates of (0.376, 0.366) at $1,000cd/m^2$, variation of CIE coordinates with ($0.375{\pm}0.004$, $0.367{\pm}0.002$) from 500 to $3,000cd/m^2$. Maximum current efficiency of tandem phosphorescent OLED was more twice as high as single phosphorescent OLED. Our results suggest that tandem phosphorescent OLED was possible to control CIE coordinates and produce excellent color stability.

Investigation of degradation mechanism of phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes through doping concentration dependence of lifetime

  • Song, Wook;Kim, Taekyung;Lee, Jun Yeob;Lee, Yoonkyoo;Jeong, Hyein
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.350-354
    • /
    • 2018
  • Lifetime study of blue phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes was carried out to understand the dominant degradation process during electrical operation of the devices. Doping concentration dependence of the phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes was studied, which demonstrated long lifetime at low doping concentration in the phosphorescent devices and at high doping concentration in the thermally activated delayed fluorescent devices. Detailed mechanism study of the two devices described that triplet-triplet annihilation is the main degradation process of phosphorescent organic light-emitting diodes, whereas triplet-polaron annihilation is the key degradation factor of the thermally activated delayed fluorescent devices.

축광사 제조시 액체마스터배치와 고체마스터배치 적용에 따른 물리적 특성 및 염색성에 관한 연구 - 액상안료와 분산염료가 인광 PET 필름에 미치는 영향 - (A Study on the Physical Properties & Dye Ability as Applying LMB & SMB with Luminent Yarn Manufacture - The Effects of Liquid Color and Disperse Dyes on the Phosphorescent PET Films -)

  • 신현세;윤철수;임병완
    • 한국염색가공학회지
    • /
    • 제15권1호
    • /
    • pp.39-47
    • /
    • 2003
  • Phosphorescent PET/liquid color films and phosphorescent PET/disperse dyes films were prepared by melt casting method using Hot press. Then, weight ratios and exhaustion percent of films were 0.7, 1.2, 1.5, 2.0, and 2.3 wt.%. The effects of L/C and D/D contents(wt.%) of films on the thermal properties, crystal structure, H(%), brightness$(mcd/mm^2)$, morphology, and tensile properties were investigated by means of DSC and WAXD, etc. It was found that the melting temperature and crystalline diffraction peaks were not changes with increasing the liquid color contents and disperse dyes exhaustion. Also, in case of using liquid color to phosphorescent PET film, the H(%) and brightness$(mcd/mm^2)$ value were superior to phos.PET/disperse dyes film. The tensile strength and the tensile modulus were decreased with increasing the contents of liquid color and exhaustion of disperse dyes in the phosphorescent PET film. Also, the elongation at break was increased with increasing the contents of liquid color and exhaustion of disperse dyes in the phosphorescent PET film.

The effect of an EML sequence and an interlayer on the performance of the phosphorescent-fluorescent mixed WOLEDs

  • Baek, Heume-Il;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1215-1218
    • /
    • 2008
  • We investigate the effect of a light emitting layer (EML) sequence and an interlayer on the performance of the phosphorescent-fluorescent mixed white organic light emitting diodes. Two types of phosphorescent-fluorescent mixed system were evaluated. The proper position of each primary color EML was crucial to obtain best performance in each system whereas the effect of an interlayer was found to be different in both systems.

  • PDF

축광세라믹스의 광학적 특성에 관한 연구 (Optical Characteristics of Phosphorescent Materials with Water-based Ceramics)

  • 등전황홍;경미신야;허만성
    • 한국화재소방학회논문지
    • /
    • 제19권4호
    • /
    • pp.42-46
    • /
    • 2005
  • 본 연구는 축광안료 혼입률 변화에 따른 축광세라믹스 시험체의 인광휘도 변화를 측정하였다. 측정결과 축광안료 혼입률에 비례해서 인광휘도는 증대하였다. 축광안료를 $20\%$이상 혼입한 시험체는 KS와 JIS의 안전표지판 규정값을 만족하였고 축광안료를 $50\%$ 홉입한 시험체는 규정값보다 10배나 높은 결과치를 얻었다. 축광세라믹스의 인광휘도는 도포횟수에 비례해서 증대하였으나 도포횟수가 비 이상이 되면 인광휘도의 상승은 나타나지 않았다. 축광세라믹스는 사용할 재료가 모두 무기재료이고, 광학적으로도 축광피난 유도표지로서 충분히 이용할 가치가 있는 재료라고 할 수 있다.

투명 금속 음극을 이용한 전면발광 적색 인광 OLEDs의 전기 및 광학적 특성 (Electrical and Optical Properties of Red Phosphorescent Top Emission OLEDs with Transparent Metal Cathodes)

  • 김소연;하미영;문대규;이찬재;한정인
    • 한국전기전자재료학회논문지
    • /
    • 제20권9호
    • /
    • pp.802-807
    • /
    • 2007
  • We have developed red phosphorescent top emission organic light-emitting diodes with transparent metal cathodes deposited by using thermal evaporation technique. Phosphorescent guest molecule, BtpIr(acac), was doped in host CBP for the red phosphorescent emission, Ca/Ag, Ba/Ag, and Mg/Ag double layers were used as cathode materials of top emission devices, which were composed of glass/Ni/2TNATA(15 nm)/${\alpha}$-NPD(35 nm)/CBP:BtpIr(acac)(40 nm, 10%)/BCP(5 nm)/$Alq_3$(5 nm)/cathodes. The optical transparencies of these metal cathodes strongly depend on underlying Ca, Ba, and Mg layers. These layers also strongly affect the electrical conduction and emission properties of the red phosphorescent top emission devices.

투명 금속 음극을 이용한 녹색 인광 OLED의 특성 (Characteristic of transparent OLED using transparent metal cathode with green phosphorescent dopant)

  • 윤도열;문대규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.154-154
    • /
    • 2010
  • We have developed transparent OLED with green phosphorescent doped layer using transparent metal cathode deposited by thermal evaporation technique. Phosphorescent guest molecule, $Ir(ppy)_3$, was doped in host mCP for the green phosphorescent emission. Ca/Ag double layers were used as a cathode material of transparent OLED. The turn-on voltage of OLED was 5.2 V. The highest efficiency of the device reachs to 31 cd/A at 2 mA/$cm^2$.

  • PDF