• Title/Summary/Keyword: Phosphor layer

Search Result 170, Processing Time 0.025 seconds

Photoluminescence of CaS:Pb Phosphors Grown by Atomic Layer Deposition

  • Kang, Jung-Sook;Kim, Yong-Shin;KoPark, Sang-Hee;Yun, Sun-Jin;Sohn, Sang-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.29-30
    • /
    • 2000
  • CaS:Pb thin film used as phosphor layer in electroluminescent devices were deposited by an atomic layer deposition (ALD). The photoluminescence emission and excitation spectra were measured at 5 and 300K for the $CaS:Pb^{2+}$ phosphors with different Pb concentration from 0.001 at.% to 0.648 at.%. The emission spectra of these samples were characterized as UV emission and blue emission with the center of peak around 360 and 425nm, respectively. The UV emission was dominant at the low $Pb^{2+}$ concentration of 0.001 at%, whereas with increase of Pb concentration, the blue emission became a major component and to longer wavelength.

  • PDF

A Study on Powder Electroluminescencent Device using ZnS:Cu (ZnS:CU를 이용한 후막 전계 발광소자에 관한 연구)

  • 이종찬;박대희;박용규
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.121-124
    • /
    • 1998
  • Generally the structure of powder electroluminescent devices (PELDs) on ITO-film was makeup of the ZnS:Cu phosphor layer and BaTiO$_3$ insulating layer. The active layer, which consists of a suitably doped ZnS powder mixed in a dielectric, is sandwiched between two electrodes; one of which are ITO film and the other is aluminum. In this paper, three kinds of powder eleotroluminescent devices (PELDs) : WK-A(ITO/BaTiO$_3$/ZnS:Cu/Silver paste). WK-B(ITO/BaTiO$_3$+ZnS:Cu/Silver paste) and WK-C(ITO/BaTiO$_3$/ZnS:Cu/BaTiO$_3$/Silver paste), fabricated by spin coating method, were investigated. To evaluate the luminescence properties of three kinds of PELDs, EL emission spectroscopy, transferred charge density and time response of EL emission intensity under square wave voltage driving were measured.

  • PDF

New Ramp-reset Waveform for Fast Addressing in AC-PDPs

  • Kim, Oe-Dong;Ahn, Byoung-Nam;Choi, Kwang-Yeol;Yoo, Eun-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.643-646
    • /
    • 2005
  • We present new ramp-reset waveforms that realize fast addressing in AC-PDPs. These waveforms distort the distribution of wall charges on the surface of a phosphor layer: hence, the enhanced electric field helps to ignite a cell faster. They also reduce the black luminance: the divide of erasing ramp down discharges into two parts, i.e. a surface discharge and a vertical discharge, makes lower luminance.

  • PDF

The Study of Opto-electric Properties in EL Device with PMN Dielectric Layer (PMN 계 유전체 적용 EL 소자의 광전특성 연구)

  • Kum, Jeong-Hun;Han, Da-Sol;Ahn, Sung-Il;Lee, Seong-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.776-780
    • /
    • 2009
  • In this study, the opto-electric properties of EL devices with PMN dielectric layer with variation of firing tempereature were investigated. For the PMN dielectric layer process, the paste was prepared by optimization of quantitative mixing of PMN powder, $BaTiO_3$, Glass Frit, $\alpha$-Terpineol and ethyl cellulose. The EL device stack consists of Alumina substrate ($Al_2O_3$), metallic electrode (Au), insulating layer (manufactured PMN paste), phosphor layer (ELPP- 030, ELK) and transparent electrode (ITO), which is well structure as a thick film EL device. The phase transformation properties of PMN dielectric with various firing temperatures of $150^{\circ}C$ to $850^{\circ}C$ was characterized by XRD. Also the opto-electric properties of EL devices with different firing temperature were investigated by LCR meter and spectrometer. We found the best opto-electric property was obtained at the condition of $550^{\circ}C$ firing which is 3432.96 $cd/m^2$ at 1948.3 pF Capacitance, 40 kHz Frequency, 40% Duty, Vth+330 V voltage.

Design and Fabrication of HgI2 Sensor for Phosphor Screen based flat panel X-ray Detector (형광체 스크린 기반 평판형 X선 검출기 적용을 위한 요오드화수은 필름 광도전체 센서 설계 및 제작)

  • Park, Ji Koon;Jung, Bong Jae;Choi, Il Hong;Noh, Si Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.189-194
    • /
    • 2014
  • In this study, from a new x-ray detector that combines a columnar CsI:Na scintillation layer with a photosensitive mercuric iodide layer was investigated. In this structure, X-rays are converted into visible light on a thick CsI:Na layer, which is then converted to electric charges in a thin $HgI_2$ bottom layer. The thin coplanar mercuric iodide films as a photosensitive converter requiring only a few tens of volts of bias, associated with a thick columnar coating of phosphor layer, were simulated and designed. The results of this research suggest that the new coplanar x-ray detector with a hybrid-type structure can resolve the following problems: high voltage from the a-Se, and low conversion efficiency from the indirect conversion method. The results of this research suggest that the new CsI:Na/$HgI_2$ x-ray detector with a double-layer type structure can resolve the following problems: high voltage from the direct conversion method, and low conversion efficiency from the indirect conversion method.

Growth and optical characteristics of the non-phosphor white LED by mixed-source HVPE (혼합소스 HVPE에 의한 비형광체 백색 LED의 성장과 광 특성)

  • Kim, E.J.;Jeon, H.S.;Hong, S.H.;Han, Y.H.;Lee, A.R.;Kim, K.H.;Ha, H.;Yang, M.;Ahn, H.S.;Hwang, S.L.;Cho, C.R.;Kim, S.W.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.2
    • /
    • pp.61-65
    • /
    • 2009
  • In this paper, we report on the growth and optical characteristics of white-LED without fluorescent material. The growth of DH(double heterostructure) with AlGaN active layer was performed on a n-GaN/(0001) $Al_{2}O_{3}$ by the mixed-source HVPE and multi-sliding boat. The CRI(color rendering index) of packaging device charged in the range 72-93 with CIE chromaticity coordinates(x=$0.26{\sim}0.34$, y=$0.31{\sim}0.40$). And CCT(correlated color temperature) values was measured $5126{\sim}10406K$ with increasing injection current. The CIE point of conventional phosphor white LED shifts blue region, but cm point of non-phosphor white LED shifts opposite direction. These results show the mixed-source HVPE can be possible to newly fabricate method of phosphor free white LED with high CRI value.

Surface Coating Treatment of Phosphor Powder Using Atmospheric Pressure Dielectric Barrier Discharge Plasma (대기압 유전체배리어방전 플라즈마를 이용한 형광체 분말 코팅)

  • Jang, Doo Il;Ihm, Tae Heon;Trinh, Quang Hung;Jo, Jin Oh;Mok, Young Sun;Lee, Sang Baek;Ramos, Henry J.
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.455-462
    • /
    • 2014
  • This work investigated the hydrophobic coating of silicate yellow phosphor powder in the form of divalent europium-activated strontium orthosilicate ($Sr_2SiO_4:Eu^{2+}$) by using an atmospheric pressure dielectric barrier discharge (DBD) plasma with argon as a carrier and hexamethyldisiloxane (HMDSO), toluene and n-hexane as precursors. After the plasma treatment of the phosphor powder, the lattice structure of orthosilicate was not altered, as confirmed by an X-ray diffractometer. The coated phosphor powder was characterized by scanning electron microscopy, fluorescence spectrophotometry and contact angle analysis (CAA). The CAA of the phosphor powder coated with the HMDSO precursor revealed that the water contact angle increased from $21.3^{\circ}$ to $139.5^{\circ}$ (max. $148.7^{\circ}$) and the glycerol contact angle from $55^{\circ}$ to $143.5^{\circ}$ (max. $145.3^{\circ}$) as a result of the hydrophobic coating, which indicated that hydrophobic layers were successfully formed on the phosphor powder surfaces. Further surface characterizations were performed by Fourier transform infrared spectroscopy and X-ray photoelectron spectrometry, which also evidenced the formation of hydrophobic coating layers. The phosphor coated with HMDSO exhibited a photoluminescence (PL) enhancement, but the use of toluene or n-hexane somewhat decreased the PL intensity. The results of this work suggest that the DBD plasma may be a viable method for the preparation of hydrophobic coating layer on phosphor powder.

Influences of degradation in MgO protective layer and phosphors on ion-induced secondary electron emission coefficient and static margins in alternating current plasma display panels

  • Jeong, H.S.;Lim, J.E.;Park, W.B.;Jung, K.B.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.518-521
    • /
    • 2004
  • The degradation characteristics of MgO protective layer and phosphors have been investigated in terms of the ion-induced secondary electron emission coefficient ${\gamma}$ and static margin of discharge voltages, respectively, in this experiment. The ion-induced secondary electron emission coefficients ${\gamma}$ for the degraded MgO protective layer and phosphors have been studied by ${\gamma}$ -focused ion beam system. The energy of Ne+ ions used is from 80 eV to 200 eV in this experiment. The degraded MgO and phosphor layers are found to have higher ${\gamma}$ than that of normal ones without degradations or aged one. Also, the static margin of discharge voltages for test panels with degraded MgO protective layer and phosphors been found to be seriously decreased in comparison with those of normal ones without degradations.

  • PDF

White Electroluminescent Device by ZnS: Mn, Cu, Cl Phosphors

  • Kim, Jong-Su;Park, Je-Hong;Lee, Sung-Hun;Kim, Gwang-Chul;Kwon, Ae-Kyung;Park, Hong-Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.3 s.16
    • /
    • pp.1-4
    • /
    • 2006
  • White-light-emitting ZnS:Mn, Cu, Cl phosphors with spherical shape and the size of $20\;{\mu}m$ are successfully synthesized. They have the double phases of cubic and hexagonal structures. They are applied to electroluminescent (EL) devices by silk screen method with the following structure: $electrode/BaTiO_3$ insulator layer ($50{\sim}60\;{\mu}m$)/ ZnS:Mn, Cu, Cl phosphor layer ($30{\sim}50\;{\mu}m$)/ITO glass. The EL devices are driven with the voltage of 100 V and the frequency of 400 Hz. The EL devices show the three emission peaks. The blue and green emission bands are originated from $CICu^{2+}$ transition and $ClCu^+$ transition, respectively. The yellow emission band results from $^4T^6A$ transition of $Mn^{2+}$ ion. As an increase of Cu concentrations, the blue and green emission intensities decrease whereas the yellow emission intensity increases; the quality becomes warm white. It is due to the energy transfer from the blue and green bands to the yellow band.

  • PDF