• Title/Summary/Keyword: Phosphor conversion efficiency

Search Result 30, Processing Time 0.029 seconds

Design and Fabrication of HgI2 Sensor for Phosphor Screen based flat panel X-ray Detector (형광체 스크린 기반 평판형 X선 검출기 적용을 위한 요오드화수은 필름 광도전체 센서 설계 및 제작)

  • Park, Ji Koon;Jung, Bong Jae;Choi, Il Hong;Noh, Si Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.189-194
    • /
    • 2014
  • In this study, from a new x-ray detector that combines a columnar CsI:Na scintillation layer with a photosensitive mercuric iodide layer was investigated. In this structure, X-rays are converted into visible light on a thick CsI:Na layer, which is then converted to electric charges in a thin $HgI_2$ bottom layer. The thin coplanar mercuric iodide films as a photosensitive converter requiring only a few tens of volts of bias, associated with a thick columnar coating of phosphor layer, were simulated and designed. The results of this research suggest that the new coplanar x-ray detector with a hybrid-type structure can resolve the following problems: high voltage from the a-Se, and low conversion efficiency from the indirect conversion method. The results of this research suggest that the new CsI:Na/$HgI_2$ x-ray detector with a double-layer type structure can resolve the following problems: high voltage from the direct conversion method, and low conversion efficiency from the indirect conversion method.

A Study of Ultrasonic Rotary Motor Using the Langevin Type Vibrator (란쥬반형 진동자를 이용한 초음파 회전 모터에 관한 연구)

  • Lee, Jae-Hyung;Park, Tae-Gone;Kwon, Oh-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.223-227
    • /
    • 2003
  • In this study, ultrasonic rotary motors using a bolted langevin type ultrasonic vibrator were designed and fabricated. The stator vibrator has a longitudinal transducer section composed of two metal blocks and two piezoelectric ceramic elements (thickness-polarized) and a mode conversion metal block section called a torsion coupler. And, three kinds of motors were studied by finite element analysis and experiments. So, as material of torsion coupler which generate mode conversion of vibration copper, brass, and phosphor bronze were used. As a result, speed and torque were changed in proportion to the electrical input Voltage, but it was saturated in high voltage. And bad efficiency which was different from a expectation was measured in this motors. So, various problems should be improved for practical use. Finally, The motor which has 1 [cm] diameter was fabricated to present a possibility of miniaturization of this type motors.

  • PDF

Thickness Dependence of Ultraviolet-excited Photoluminescence Efficiency of Lumogen Film Coated on Charge-coupled Device

  • Tao, Chunxian;Ruan, Jun;Shu, Shunpeng;Lu, Zhongrong;Hong, Ruijin;Zhang, Dawei;Han, Zhaoxia
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.284-288
    • /
    • 2017
  • In order to investigate the ultraviolet-excited photoluminescence properties of phosphor coatings and their relationship to thickness, Lumogen coatings with different thicknesses were deposited on quartz substrates and charge-coupled device chips by thermal evaporation. The variation of the film thickness affected the crystallite size, surface roughness and fluorescence signal. It was found that the Lumogen coating with the thickness of 420 nm has the largest luminescent signal and conversion efficiency, and the corresponding coated charge-coupled devices had the maximum quantum efficiency in the ultraviolet. These results provided one key parameter for improving the sensitivity of Lumogen coated charge-coupled devices to ultraviolet light.

Luminescence Properties of White LED with Different CdSe nanoparticles Phosphor Layer (CdSe 나노입자 형광층 구조에 따른 백색 LED 발광 특성 연구)

  • Chung, Won-Keun;Yu, Hong-Jeong;Park, Sun-Hee;Chun, Byung-Hee;Kim, Sung-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.320-324
    • /
    • 2011
  • TOPO/TOP capped CdSe nanoparticles were synthesized via thermal-solvent method. The 540 nm green and 620 nm red emitting CdSe nanoparticles were obtained by controlling the reaction time and temperature. Phosphor conversion white LED was produced combining a 460 nm emitting InGaN LED chip as an excitation source with 540 and 620 nm CdSe nanoparticles as phosphors. The single or double phosphor layer was fabricated by mixing with epoxy, and investigated the effects on the luminous properties of the white LED. The single phosphor layer white LED showed 5.78 lm/W with CIE of (0.36, 0.45) in reddish white, and the double phosphor layer white LED showed 7.28 lm/W with that of (0.32, 0.34) in pure white at 20 mA. When the 400 nm near-UV LED was applied to optical pumping source, the luminous efficiency of white LED was enhanced to 8.76 lm/W.

The signal property and structure design of CsI:Na/a-Se for diagnostic x-ray imaging (진단 X선 영상을 위한 CsI:Na/a-Se 구조설계 및 신호특성)

  • Park, Ji-Koon;Heo, Ye-Ji;Park, Jeong-Eun;Park, Sang-Jin;Kim, Hyun-Hee;No, Ci-Chul;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.4
    • /
    • pp.35-38
    • /
    • 2009
  • Flat-panel x-ray detectors using a phosphor and photoconductor material have been used for application in various medical modalities. In this study, the monte carlo simulation, optical and x-ray response characteristics were investigated in the conversion structure obtained by a columnar CsI:Na scintillation layer with a photosensitive amorphous selenium layer. Firstly, from the measurement of luminescent spectrum of CsI:Na and absorption spectrum of a-Se layer, the signal conversion characteristics are analysed. And also, the x-ray sensitivity is measured and compared with conventional a-Se($500{\mu}m$) as a function of electrical field. From the experimental result, the x-ray sensitivities of the CsI:Na($180{\mu}m$)/a-Se($30{\mu}m$) detector and the a-Se($500{\mu}m$) detector were $7.31nC/mR-cm^{2}$ and $3.95nC/mR-cm^{2}$at an electric field of $10V/{\mu}m$, respectively.

  • PDF

Evaluation of the Lighting Characteristics in High Power White LED Module with Cooling Condition (방열 조건에 따른 5W급 고출력 백색 LED 모듈의 광 특성 평가)

  • Yun, Janghee;Ryeom, Jeongduk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.1-8
    • /
    • 2012
  • The performance and lighting characteristics of the LED depend on cooling condition because the power LED generates lots of heat. In this paper, the effect of the generated heat from power LED module on lighting characteristics and performance is measured and evaluated. For experiments, the transient temperature of a power LED module with cooling condition is measured. In addition, the temperature and lighting characteristics of the LED module are measured during the steady state. As a result, the cooling condition is less effective on the lighting characteristics of the LED module at rated current but the cooling condition extremely affects those of the LED module over the rated current. Because high temperature of the power LED module causes the low phosphor conversion, luminance efficiency becomes low and color temperature becomes high. When power LED module are driven over the rated condition, higher temperature is directly related to lighting characteristics and performance of the LED module rather than higher current.

Accurate electronic structures for Ce doped SiAlON using a semilocal exchange-correlation potential

  • Yu, Dong-Su;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.438-438
    • /
    • 2011
  • White light-emitting diodes (LEDs), the so-called next-generation solid-state lighting, offer benefits in terms of reliability, energy-saving, maintenance, safety, lead-free, and eco-friendly. Recently, rare-earth-doped oxynitride or nitride compounds have attracted a great deal of interest as a photoluminescent material because of their unique luminescent property, especially for white LEDs applications. Ce doped ${\beta}$-SiAlON has been studied as a wavelength conversion phosphor in white LEDs thanks to its high absorption rates, high quantum efficiency, and excellent thermal stability. Previously researches were not enough to understand the detail mechanism and characteristics of ${\beta}$-SiALON. The bandgap structures and electronic structures were not exact due to limitation of calculation methods. In this study, to elucidate the Ce doping effect on the SiAlON system, accurate band structures and electronic structure of the Ce doped ${\beta}$-SiAlON was intensively investigated using density functional theory calculations. In order to get a better description of the band gaps, MBJLDA method were used. We have found a single Ce atom site in ${\beta}$-SiAlON super cell. Furthermore, the density of state, band structure and lattice constant were intensively investigated.

  • PDF

Signal and Noise Analysis of Indirect-Conversion Digital Radiography Detectors Using Linear-systems Transfer Theory (선형시스템 전달이론을 이용한 간접변환방식 디지털 래디오그라피 디텍터의 신호 및 잡음 분석)

  • Yun, Seung-Man;Lim, Chang-Hwy;Han, Jong-Chul;Joe, Ok-La;Kim, Jung-Min;Kim, Ho-Kyung
    • Progress in Medical Physics
    • /
    • v.21 no.3
    • /
    • pp.261-273
    • /
    • 2010
  • For the use of Indirect-conversion CMOS (complementary metal-oxide-semiconductor) detectors for digital x-ray radiography and their better designs, we have theoretically evaluated the spatial-frequency-dependent detective quantum efficiency (DQE) using the cascaded linear-systems transfer theory. In order to validate the developed model, the DQE was experimentally determined by the measured modulation-transfer function (MTF) and noise-power spectrum, and the estimated incident x-ray fluence under the mammography beam quality of W/Al. From the comparison between the theoretical and experimental DQEs, the overall tendencies were well agreed. Based on the developed model, we have investigated the DQEs values with respect to various design parameters of the CMOS x-ray detector such as phosphor quantum efficiency, Swank noise, photodiode quantum efficiency and the MTF of various scintillator screens. This theoretical approach is very useful tool for the understanding of the developed imaging systems as well as helpful for the better design or optimization for new development.

Comparison of the I-V Characteristic as Various Composition ratio of Iodine in a-Se of $BrO_2/a-Se$ based Radiation Conversion Sensor ($BrO_2/a-Se$ 구조의 방사선 변환센서에서 a-Se에 첨가된 조성비 변화에 따른 I-V 특성 비교)

  • Choi, Jang-Yong;Park, Ji-Koon;Gong, Hyun-Gi;Ahn, Sang-Ho;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.440-443
    • /
    • 2002
  • Present1y the X-Ray diagnosis system is a real condition that is changing by digital ways in it's existent analog ways. This digital radiation detector is divided by the direct method and the indirect method. The indirect method of applied voltage has special qualities that the resolution is low than direct method by diffusion effect that happens. The conversion process ( radiation${\rightarrow}$visible ray${\rightarrow}$electrical signal of two times, has shortcomings that the energy conversion efficiency of electrical signal is low. The direct method has shortcomings that need strong electric fie1d to detect electrical signal efficiently. This research achieved to develop digital detector of the Hybrid method that have form that mixes two ways to supplement shortcoming of direct. indirect method. A studied electrical characteristic by Iodine's Mixture ratio change is added to selenium in the detector which has a multi-layer structure (Oxybromide + a-Se). There are 8 kinds of Manufactured compositions to amorphous selenium Iodine each 30ppm, 100ppm, 200 ppm, 300ppm, 400ppm, 500ppm, 600ppm, 700ppm by a doped photoconductor through a vacuum thermal evaporation method. The phosphor layer is consisted of Oxybromide ($BrO_2$) which uses optical adhesives multi-layer structure. The manufactured compositions calculates and compares Net Charge and signal to noise ratio measuring Photocurrent about Darkcurrent and X-ray. When doped Iodine Mixture ratio is 500ppm to the multi-layer structure (Oxybromide + a-Se), applied voltage of $3V/{\mu}m$, leakage current of compositions $2.61nA/cm^2$ and net charge value by 764pC/$cm^2$/mR then the best result appeared.

  • PDF

Fabrication of Ordered One-Dimensional Silicon Structures and Radial p-n Junction Solar Cell

  • Kim, Jae-Hyun;Baek, Seong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.86-86
    • /
    • 2012
  • The new approaches for silicon solar cell of new concept have been actively conducted. Especially, solar cells with wire array structured radial p-n junctions has attracted considerable attention due to the unique advantages of orthogonalizing the direction of light absorption and charge separation while allowing for improved light scattering and trapping. One-dimenstional semiconductor nano/micro structures should be fabricated for radial p-n junction solar cell. Most of silicon wire and/or pillar arrays have been fabricated by vapour-liquid-solid (VLS) growth because of its simple and cheap process. In the case of the VLS method has some weak points, that is, the incorporation of heavy metal catalysts into the growing silicon wire, the high temperature procedure. We have tried new approaches; one is electrochemical etching, the other is noble metal catalytic etching method to overcome those problems. In this talk, the silicon pillar formation will be characterized by investigating the parameters of the electrochemical etching process such as HF concentration ratio of electrolyte, current density, back contact material, temperature of the solution, and large pre-pattern size and pitch. In the noble metal catalytic etching processes, the effect of solution composition and thickness of metal catalyst on the etching rate and morphologies of silicon was investigated. Finally, radial p-n junction wire arrays were fabricated by spin on doping (phosphor), starting from chemical etched p-Si wire arrays. In/Ga eutectic metal was used for contact metal. The energy conversion efficiency of radial p-n junction solar cell is discussed.

  • PDF