• 제목/요약/키워드: Phospholipase C (PLC)

검색결과 148건 처리시간 0.021초

The Inhibitory Mechanism of Aloe Glycoprotein (NY945) on the Mediator Release in the Guinea Pig Lung Mast Cell Activated with Antigen-Antibody Complexes

  • Ro, Jai-Youl;Lee, Byung-Chul;Chung, Myung-Hee;Lee, Seung-Ki;Sung, Chung-Ki;Kim, Kyung-Hwan;Park, Young-In
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권1호
    • /
    • pp.119-131
    • /
    • 1998
  • It has been reported that the glycoprotein extracted from Aloe has strong anti-inflammatory response. However, there has been no research report yet about the effect of Aloe on allergic hypersensitivity reactivity. By using guinea pig lung mast cells, this study aimed to examine the effects of Aloe glycoprotein (NY945) on the mediator releases caused by mast cell activation, and also aimed to assess the effects of NY945 on the mechanism of mediator releases in the mast cell activation. We partially purified mast cell from guinea pig lung tissues by using the enzyme digestion, the rough and the discontinuous density percoll gradient method. Mast cells were sensitized with IgG1 (anti-OA) and challenged with ovalbumin. Histamine was assayed by fluorometric analyzer, leukotrienes by radioimmunoassay. The phospholipase D activity was assessed by the production of labeled phosphatidylalcohol. The amount of mass 1, 2-diacylglycerol (DAG) was measured by the $[^3H]DAG$ produced when prelabeled with $[^3H]myristic$ acid. The phospholipid methylation was assessed by measuring the incorporation of the $[^3H]methyl$ moiety into phospholipids of cellular membranes. Pretreatment of NY945 (10 ${\mu}g$) significantly decreased histamine and leukotrienes releases during mast cell activation. The decrease of histamine release was stronger than that of leukotriene during mast cell activation. The phospholipase D activity increased by the mast cell activation was decreased by the dose-dependent manner in the pretreatment of NY945. The amount of DAG produced by PLC activity was decreased by NY945 pretreatment. The amount of mass 1, 2-diacylglycerol produced by activation of mast cells was decreased in the pretreatment of NY945. NY945 pretreatment strongly inhibited the incorporation of the $[^3H]methyl$ moiety into phospholipids. The data suggest that NY945 purified from Aloe inhibits in part an increase of 1, 2-diacylglycerol which is produced by activating mast cells with antigen-antibody reactions, which is mediated via phosphatidylcholine-phospholipase D and phosphatidylinositol-phospholipase C systems, and then followed by the inhibition of histamine release. Furthermore, NY945 reduces the production of phosphatidylcholine by inhibiting the methyltransferase I and II, which decreases the conversion of phosphatidylcholine into arachidonic acid and inhibits the production of leukotrienes.

  • PDF

Signaling Pathway of Lysophosphatidic Acid-Induced Contraction in Feline Esophageal Smooth Muscle Cells

  • Nam, Yun Sung;Suh, Jung Sook;Song, Hyun Ju;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권2호
    • /
    • pp.139-147
    • /
    • 2013
  • Lysolipids such as LPA, S1P and SPC have diverse biological activities including cell proliferation, differentiation, and migration. We investigated signaling pathways of LPA-induced contraction in feline esophageal smooth muscle cells. We used freshly isolated smooth muscle cells and permeabilized cells from cat esophagus to measure the length of cells. Maximal contraction occurred at $10^{-6}M$ and the response peaked at 30s. To identify LPA receptor subtypes in cells, western blot analysis was performed with antibodies to LPA receptor subtypes. LPA1 and LPA3 receptor were detected at 50 kDa and 44 kDa. LPA-induced contraction was almost completely blocked by LPA receptor (1/3) antagonist KI16425. Pertussis toxin (PTX) inhibited the contraction induced by LPA, suggesting that the contraction is mediated by a PTX-sensitive G protein. Phospholipase C (PLC) inhibitors U73122 and neomycin, and protein kinase C (PKC) inhibitor GF109203X also reduced the contraction. The PKC-mediated contraction may be isozyme-specific since only $PKC{\varepsilon}$ antibody inhibited the contraction. MEK inhibitor PD98059 and JNK inhibitor SP600125 blocked the contraction. However, there is no synergistic effect of PKC and MAPK on the LPA-induced contraction. In addition, RhoA inhibitor C3 exoenzyme and ROCK inhibitor Y27632 significantly, but not completely, reduced the contraction. The present study demonstrated that LPA-induced contraction seems to be mediated by LPA receptors (1/3), coupled to PTX-sensitive G protein, resulting in activation of PLC, PKC-${\varepsilon}$ pathway, which subsequently mediates activation of ERK and JNK. The data also suggest that RhoA/ROCK are involved in the LPA-induced contraction.

The Effect of Epidermal Growth Factor on Cell Proliferation and Its Related Signal Pathways in Pig Hepatocytes

  • Kim Dong-Il;Han Ho-Jae;Park Soo-Hyun
    • 대한의생명과학회지
    • /
    • 제12권3호
    • /
    • pp.249-254
    • /
    • 2006
  • It has been reported that liver is a very important organ to xenotransplantation. Pig is known to be a most suitable species in transplantation of human organs. However, the physiological function of pig hepatocytes is not clear elucidated. Epidermal growth factor (EGF) is known to be a mitogen in various cell systems. Thus, we examined the effect of EGF on cell proliferation and its related signal cascades in primary cultured pig hepatocytes. EGF stimulates cell proliferation in a dose (>1ng/ml) dependent manner. EGF-induced increase of $[^3H]-thymidine$ incorporation was blocked by AG 1478 ($10^{-6}M$, an EGF receptor antagonist) genistein and herbymycin A (tyrosine kinase inhibitors, $10^{-6}M$), suggesting the role of activation and tyrosine phosphorylation of EGF receptor. In addition, EGF-induced increase of $[^3H]-thymidine$ incorporation was prevented by neomycin $(10^{-4}M)$, U73122 $(10^{-5}M)$ (phospholipase C [PLC] inhibitors), staurosporine ($(10^{-8}M)$, or bisindolylmaleimide I $(10^{-6}M)$ (protein kinase C [PKC] inhibitors), suggesting the role of PLC and PKC. Moreover, EGF-induced increase of $[^3H]-thymidine$ incorporation was blocked by PD 98059 (a p44/42 mitogen activated protein kinase [MAPK] inhibitor), SB 203580 (a p38 MAPK inhibitor), and SP 600125 (a JNK inhibitor). EGF increased the translocation of PKC from cytosol to membrane fraction and activated p42/44 MAPK, p38 MAPK and JNK. In conclusion, EGF stimulates cell proliferation via PKC and MAPK in cultured pig hepatocytes.

  • PDF

Anti-platelet Effect of Black Tea Extract via Inhibition of TXA2 in Rat

  • Ro, Ju-Ye;Cho, Hyun-Jeong
    • 대한의생명과학회지
    • /
    • 제25권4호
    • /
    • pp.302-312
    • /
    • 2019
  • The aim of this work was to investigate the effect of black tea extract (BTE) on collagen -induced platelet aggregation. In this study, BTE (10~500 ㎍/mL) was shown to inhibit platelet aggregation via thromboxane A2 (TXA2) down-regulation by blocking cyclooxygenase-1 (COX-1) activity. Also, BTE decreased intracellular Ca2+ mobilization ([Ca2+]i). Additionally, BTE enhanced the levels of both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which are aggregation-inhibiting molecules. BTE inhibited the phosphorylation of phospholipase C (PLC) γ2 and syk activated by collagen. BTE regulated platelet aggregation via cAMP-dependent phosphorylation of vasodilator-stimulated phosphoprotein (VASP) Ser157. The anti-platelet effects of BTE in high fat diet (HFD)-induced obese rats were evaluated. After eight weeks of BTE treatment (300 and 600 mg/kg), the platelet aggregation rate in the treated groups was significantly less than that in the HFD-fed control group. Also, BTE exhibited a hepatoprotective effect and did not exert hepatotoxicity. Therefore, these data suggest that BTE has anti-platelet effects on collagen-stimulated platelet aggregation and may have therapeutic potential for the prevention of platelet-mediated thrombotic diseases.

결핵환자에서 NAD Glycohydrolase Activity에 관한 연구 (NAD Glycohydrolase Activity in Patients of Tuberculosis)

  • 서재석;이용철;이양근
    • Tuberculosis and Respiratory Diseases
    • /
    • 제41권5호
    • /
    • pp.489-493
    • /
    • 1994
  • 연구배경: NAD glycohydrolase(NADase)는 세포 표면에 위치하며 glycosylphatidylinositol(GPI)로 세포표면에 부착되어 있으며 bacterial PI-specific phospholipase C(PI-PLC)에 의해 분리된다. 최근 결핵환자에서 NADase가 증가한다는 보고가 있었으나 결핵균자체가 NADase가 높기 때문에 절대적인 NADase치가 증가했는 지는 확실치 않다. 따라서 저자들은 정상 대조군과 결핵환자의 적혈구에서 순수한 NADase activity를 측정하였다. 방법: 19명의 정상 건강 대조군과 16명의 과거 결핵의 진단 및 치료를 받지 않은 결핵환자를 대상으로하여 NADase activity를 측정하였고 결핵환자는 결핵치료 3개월후 재 검사하였다. NADase activity는 [carbonyl-$^3H$] nicotinamide 동위원소를 사용하여 측정하였다. 결과: 건강 대조군에서 $2031{\pm}824.0pmol/min/10^6$ erythrocytes, 결핵 감염군에서 $3339{\pm}1568.0$, 그리고 isoniazide와 rifampin으로 치료한 3개월 후 $2238.6{\pm}1013.1$을 얻어 결핵 감염시 NADase activity가 유의한 차이를 가지고 증가하며(p<0.05), 치료전에 비하여 치료후 유의있게 감소하였다. 결론: 결핵감염시 NADase activity가 올라가고 결핵 치료시 NADase activity가 정상화 되어 NADase activity가 결핵감염의 진단 및 치료에 대한 새로운 지표가 될수 있을 것으로 사료된다.

  • PDF

Chemotactic Effect of Leukotactin-1/CCL15 on Human Neutrophils

  • Lee Ji-Sook;Yang Eun-Ju;Ryang Yong-Suk;Kim In-Sik
    • 대한의생명과학회지
    • /
    • 제12권3호
    • /
    • pp.145-151
    • /
    • 2006
  • Leukotactin-l (Lkn-l )/CCL15 has been known as a potent chemoattractant of leukocytes. However, the precise function of Lkn-l in human neutrophils has not been explained well. In the present study, we investigated the contribution of Lkn-1 in chemotactic activity of human neutrophils. Both CCR1 and CCR3 mRNA expressions are strongly expressed in human neutrophils but CCR2 protein expression was uniquely detected on the cell surface. Lkn-l binding to CCR1 and CCR3 induced chemotactic activity of neutrophils. Chemotactic index of Lkn-l was comparable to that of IL-8. $MIP-1{\alpha}/CCL3$ binding to CCR1 and CCR5 has no effect on neutrophil migration. Cell migration, in response to Lkn-l, was blocked by pertussis toxin (Ptx), a $G_o/G_i$ protein inhibitor, and U73122, a phospholipase C(PLC) inhibitor but not by protein kinase C inhibitor such as rottlerin, and Ro-31-8425. Taken together, our results demonstrate that Lkn-l transduces the chemotaxis signal through $G_o/G_i$ protein and PLC. This finding provides the molecular mechanism by which Lkn-l may contribute to neutrophil movement into the site of inflammation.

  • PDF

Comparative effects of angiotensin II and angiotensin-(4-8) on blood pressure and ANP secretion in rats

  • Phuong, Hoang Thi Ai;Yu, Lamei;Park, Byung Mun;Kim, Suhn Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권6호
    • /
    • pp.667-674
    • /
    • 2017
  • Angiotensin II (Ang II) is metabolized from N-terminal by aminopeptidases and from C-terminal by Ang converting enzyme (ACE) to generate several truncated angiotensin peptides (Angs). The truncated Angs have different biological effects but it remains unknown whether Ang-(4-8) is an active peptide. The present study was to investigate the effects of Ang-(4-8) on hemodynamics and atrial natriuretic peptide (ANP) secretion using isolated beating rat atria. Atrial stretch caused increases in atrial contractility by 60% and in ANP secretion by 70%. Ang-(4-8) (0.01, 0.1, and $1{\mu}M$) suppressed high stretch-induced ANP secretion in a dose-dependent manner. Ang-(4-8) ($0.1{\mu}M$)-induced suppression of ANP secretion was attenuated by the pretreatment with an antagonist of Ang type 1 receptor ($AT_1R$) but not by an antagonist of $AT_2R$ or $AT_4R$. Ang-(4-8)-induced suppression of ANP secretion was attenuated by the pretreatment with inhibitor of phospholipase (PLC), inositol triphosphate ($IP_3$) receptor, or nonspecific protein kinase C (PKC). The potency of Ang-(4-8) to inhibit ANP secretion was similar to Ang II. However, Ang-(4-8) $10{\mu}M$ caused an increased mean arterial pressure which was similar to that by 1 nM Ang II. Therefore, we suggest that Ang-(4-8) suppresses high stretch-induced ANP secretion through the $AT_1R$ and $PLC/IP_3/PKC$ pathway. Ang-(4-8) is a biologically active peptide which functions as an inhibition mechanism of ANP secretion and an increment of blood pressure.

The Inhibitory Mechanism on Acetylcholine-Induced Contraction of Bladder Smooth Muscle in the Streptozotocin-Induced Diabetic Rat

  • Han, Jong Soo;Kim, Su Jin;Nam, Yoonjin;Lee, Hak Yeong;Kim, Geon Min;Kim, Dong Min;Sohn, Uy Dong
    • Biomolecules & Therapeutics
    • /
    • 제27권1호
    • /
    • pp.101-106
    • /
    • 2019
  • Most diabetic patients experience diabetic mellitus (DM) urinary bladder dysfunction. A number of studies evaluate bladder smooth muscle contraction in DM. In this study, we evaluated the change of bladder smooth muscle contraction between normal rats and DM rats. Furthermore, we used pharmacological inhibitors to determine the differences in the signaling pathways between normal and DM rats. Rats in the DM group received an intraperitoneal injection of 65 mg/kg streptozotocin and measured blood glucose level after 14 days to confirm DM. Bladder smooth muscle contraction was induced using acetylcholine (ACh, $10^{-4}M$). The materials such as, atropine (a muscarinic receptor antagonist), U73122 (a phospholipase C inhibitor), DPCPX (an adenosine $A_1$ receptor antagonist), udenafil (a PDE5 inhibitor), prazosin (an ${\alpha}_1$-receptor antagonist), papaverine (a smooth muscle relaxant), verapamil (a calcium channel blocker), and chelerythrine (a protein kinase C inhibitor) were pre-treated in bladder smooth muscle. We found that the DM rats had lower bladder smooth muscle contractility than normal rats. When prazosin, udenafil, verapamil, and U73122 were pre-treated, there were significant differences between normal and DM rats. Taken together, it was concluded that the change of intracellular $Ca^{2+}$ release mediated by PLC/IP3 and PDE5 activity were responsible for decreased bladder smooth muscle contractility in DM rats.

Effects of Histamine on Cultured Interstitial Cells of Cajal in Murine Small Intestine

  • Kim, Byung Joo;Kwon, Young Kyu;Kim, Euiyong;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권2호
    • /
    • pp.149-156
    • /
    • 2013
  • Interstitial cells of Cajal (ICCs) are the pacemaker cells in the gastrointestinal tract, and histamine is known to regulate neuronal activity, control vascular tone, alter endothelial permeability, and modulate gastric acid secretion. However, the action mechanisms of histamine in mouse small intestinal ICCs have not been previously investigated, and thus, in the present study, we investigated the effects of histamine on mouse small intestinal ICCs, and sought to identify the receptors involved. Enzymatic digestions were used to dissociate ICCs from small intestines, and the whole-cell patch-clamp configuration was used to record potentials (in current clamp mode) from cultured ICCs. Histamine was found to depolarize resting membrane potentials concentration dependently, and whereas 2-PEA (a selective H1 receptor agonist) induced membrane depolarizations, Dimaprit (a selective H2-agonist), R-alpha-methylhistamine (R-alpha-MeHa; a selective H3-agonist), and 4-methylhistamine (4-MH; a selective H4-agonist) did not. Pretreatment with $Ca^{2+}$-free solution or thapsigargin (a $Ca^{2+}$-ATPase inhibitor in endoplasmic reticulum) abolished the generation of pacemaker potentials and suppressed histamine-induced membrane depolarization. Furthermore, treatments with U-73122 (a phospholipase C inhibitor) or 5-fluoro-2-indolyl des-chlorohalopemide (FIPI; a phospholipase D inhibitor) blocked histamine-induced membrane depolarizations in ICCs. On the other hand, KT5720 (a protein kinase A inhibitor) did not block histamine-induced membrane depolarization. These results suggest that histamine modulates pacemaker potentials through H1 receptor-mediated pathways via external $Ca^{2+}$ influx and $Ca^{2+}$ release from internal stores in a PLC and PLD dependent manner.

인체폐암세포의 성장에 미치는 위경장의 영향에 관한 연구 (Induction of Cdk Inhibitor p21 and Inhibition of hTERT Expression by the Aqueous Extract of Wikyung-tang in Human Lung Carcinoma Cells)

  • 최해윤;박철;최영현;박동일
    • 동의생리병리학회지
    • /
    • 제18권2호
    • /
    • pp.553-560
    • /
    • 2004
  • In the present study, we investigated the anti-proliferative effects of aqueous extract of Wikyung-tang(WKT) on the growth of human lung carcinoma cell line A549. WKT treatment declined the cell viability and proliferation of A549 cells in a concentration-dependent manner. The anti-proliferative effects by WKT treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. WKT treatment induced an inhibition and/or degradation of apoptotic target proteins such poly(ADP-ribose) polymerase (PARP) and phospholipase C-γ1 (PLC-γ1). WKT treatment did not affect the levels of other Bcl-2 family gene products, such as Bcl-2, Bax and Bad. Western blot analysis and RT-PCT data revealed that the levels of tumor suppressor p53 and cyclin-dependent kinase inhibitor p21 were induced by WKT treatment in A549 cells. Additionally, WKT treatment induced the down-regulation of telomerase reverse transcriptase mRNA (hTERT) expression of A549 cells, however, the levels of other telomere-regulatory gene products were not affected. Taken together, these findings suggest that WKT-induced inhibition of human lung cancer cell proliferation is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products and WKT may have therapeutic potential in human lung cancer.