• Title/Summary/Keyword: Phospholipase C(PLC)

Search Result 148, Processing Time 0.028 seconds

Differential regulation of phospholipase $C\gamma$ isoforms through Fc$\varepsilon$RI, high affinity IgE receptor

  • Yoon, Eung-Joo;Beom, Sun-Ryeo;Kim, Kyeong-Man
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.93.3-94
    • /
    • 2003
  • The signaling components of high affinity IgE receptor (Fc RI) were searched by yeast-hybrid screening of the cDNA library constructed from RBL-2H3 cells. The cytoplasmic part of the Fc RI- chain was found to specifically interact with PLC 2, and further comparatives studies were conducted focusing on the differential regulation of two PLC- isoforms through Fc RI. The inhibitors of Src, Syk, and protein kinase C similarly affected the tyrosine phosporylations of PLC 1 and PLC 2 but the inhibitors of PI3-kinase and p42/44 ERK effectively inhibited the activation of PLC 1 but not PLC 2. (omitted)

  • PDF

Altered PLCβ-1 expression in the gerbil hippocampal complex following spontaneous seizure

  • Lee, Saet-Byeol;Oh, Yun-Jung;Chung, Jae-Kwang;Jeong, Ji-Heon;Lee, Sang-Duk;Park, Dae-Kyoon;Park, Kyung-Ho;Ko, Jeong-Sik;Kim, Duk-Soo
    • BMB Reports
    • /
    • v.44 no.9
    • /
    • pp.566-571
    • /
    • 2011
  • Although the phospholipase C (PLC)${\beta}$-1 isoform is associated with spontaneous seizure and distinctively expressed in the telencephalon, the distribution of PLC${\beta}$-1 expression in the epileptic gerbil hippocampus remains controversial. Therefore, we determined whether PLC${\beta}$-1 is associated with spontaneous seizure in an animal model of genetic epilepsy. In the present study, PLC${\beta}$-1 immunoreactivity was down-regulated in seizure-sensitive (SS) gerbils more than in seizure-resistant (SR) gerbils. The expression of PLC${\beta}$-1 within calretinin (CR)-positive neurons was rarely detected within the dentate hilar region of SS gerbils. PLC${\beta}$-1 immunoreactivity in the hippocampus was significantly elevated as compared to that in pre-seizure SS gerbil 3 h post-ictal. These findings suggest that alterations in PLC${\beta}$-1 immunoreactivity in the SS gerbil hippocampus may be closely related to the epileptic state of the gerbil brain and transiently elevated PLC${\beta}$-1 protein levels following seizure episodes. Such alterations may be compensatory responses in the SS gerbil hippocampus.

Involvement of Cytosolic Phospholipase $A_2$ in Nerve Growth Factor-Mediated Neurite Outgrowth of PC12 Cells

  • Choi, Soon-Wook;Yu, Eun-Ah;Lee, Young-Seek;Yoo, Young-Sook
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.525-530
    • /
    • 2000
  • The nerve growth factor (NGF) induces neuronal differentiation and neurite outgrowth of PC12 cells, whereas epidermal growth factors (EGF) stimulate growth and proliferation of the cells. In spite of this difference, NGF-or EGF-treated PC12 cells share various properties in cellular-signaling pathways. These include the activation of the phosphoinositide (PI)-3 kinase, 70 kDa S6 kinase, and in the mitogen-activated protein (MAP) kinase pathway, following the binding of these growth factors to intrinsic receptor tyrosine kinases (RTKs). Therefore, many studies have been attempted to access the critical signaling events in determining the differentiation and proliferation of PC12 cells. In this study, we investigated the cytosolic phospholipase $A_2$ ($cPLA_2$) in neurite behavior in order to identify the differences of signaling pathways between the NGF-induced differentiation and the EGF-induced proliferation of PC12 cells. We have showed here that the $cPLA_2$ was translocated from cytosol to membrane only in NGF-treated cells. We also demonstrated that this translocation is associated with NGF-induced activation of phospholipase $C-{\gamma}(PLC-{\gamma})$, which elevates intracellular $Ca^{2+}$ concentration. These results reveal that the translocation of $cPLA_2$ may be a requisite event in the neuronal differentiation of PC12 cells. Various phospholipase inhibitors were used to confirm the importance of these enzymes in the differentiation of PC12 cells. Neomycin B, a PLC inhibitor, dramatically inhibited the neurite outgrowth, and two distinct $PLA_2$ inhibitors, 4-bromophenacyl bromide (BPB) and arachidonyltrifluoro-methyl ketone ($AACOCF_3$) also suppressed the neurite outgrowth of the cells, as well Taken together, these data indicated that $cPLA_2$ is involved in NGF-induced neuronal differentiation and neurite outgrowth of PC12 cells.

  • PDF

Epigallocatechin Gallate Activates Phospholipase D in Glioma Cells (교세포에서 Epigallocatechin Gallate에 의한 포스포리파제 D의 활성화)

  • Kim, Shi-Yeon;Kim, Joonmo;Min, Do-Sik
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.924-932
    • /
    • 2003
  • Epigallocatechin-3 Gallate (EGCG), a major constituent of green tea, has attracted increasing interest because of its many reported health benefits. Here we demonstrate for the first time that EGCG stimulates phospholipase D (PLD) activity in U87 human astroglioma cells. EGCG-induced PLD activation was abolished by the phospholipase C (PLC) inhibitor and a lipase inactive PLC-\gama1$ mutant, and was dependent on intracellular $Ca^{ 2+}$, and possibly involved $Ca^{ 2+}$ calmodulin-dependent protein kinase II (CaM kinase II). Interestingly, EGCG induced translocation of PLC-\gama1$ from the cytosol to the membrane and PLC-\gama1$interaction with PLD1. Taken together, these results demonstrate for the first time that in human astroglioma cells, EGCG regulates PLD activity via a signaling pathway involving a PLC-\gama1$ (inositol 1,4,5-trisphosphate-$Ca^{ 2+}$)-CaM kinase II-PLD pathway.

Glucosylsphingosine Activates Serotonin Receptor 2a and 2b: Implication of a Novel Itch Signaling Pathway

  • Afzal, Ramsha;Shim, Won-Sik
    • Biomolecules & Therapeutics
    • /
    • v.25 no.5
    • /
    • pp.497-503
    • /
    • 2017
  • Recent reports claimed that glucosylsphingosine (GS) is highly accumulated and specifically evoking itch-scratch responses in the skins of atopic dermatitis (AD) patients. However, it was unclear how GS can trigger itch-scratch responses, since there were no known molecular singling pathways revealed yet. In the present study, it was verified for the first time that GS can activate mouse serotonin receptor 2a (mHtr2a) and 2b (mHtr2b), but not 2c (mHtr2c) that are expressed in HEK293T cells. Specifically, effects of GS on all mouse serotonin receptor 2 subfamily were evaluated by calcium imaging techniques. The GS-induced intracellular calcium increase was dose-dependent, and antagonists such as ketanserin (Htr2a antagonist) and RS-127445 (Htr2b antagonist) significantly blocked the GS-induced responses. Moreover, the proposed GS-induced responses appear to be mediated by phospholipase C (PLC), since pretreatment of a PLC inhibitor U-73122 abolished the GS-induced responses. Additionally, the GS-induced calcium influx is probably mediated by endogenous TRPC ion channels in HEK293T cells, since pretreatment of SKF-96365, an inhibitor for TRPC, significantly suppressed GS-induced response. In conclusion, the present study revealed for the first time that GS can stimulate mHtr2a and mHtr2b to induce calcium influx, by utilizing PLC-dependent pathway afterwards. Considering that GS is regarded as a pruritogen in AD, the present study implicates a novel GS-induced itch signaling pathway.

Saucerneol F, a New Lignan Isolated from Saururus chinensis, Attenuates Degranulation via Phospholipase Cγ1 Inhibition and Eicosanoid Generation by Suppressing MAP Kinases in Mast Cells

  • Lu, Yue;Son, Jong-Keun;Chang, Hyeun Wook
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.526-531
    • /
    • 2012
  • During our on-going studies to identify bioactive compounds in medicinal herbs, we found that saucerneol F (SF), a naturally occurring sesquilignan isolated from Saururus chinensis (S. chinensis), showed in vitro anti-inflammatory activity. In this study, we examined the effects of SF on the generation of 5-lipoxygenase (5-LO) dependent leukotriene $C_4$ ($LTC_4$), cyclooxygenase-2 (COX-2) dependent prostaglandin $D_2$ ($PGD_2$), and on phospholipase $C{\gamma}1$ ($PLC{\gamma}1$)-mediated degranulation in SCF-induced mouse bone marrow-derived mast cells (BMMCs). SF inhibited eicosanoid ($PGD_2$ and $LTC_4$) generation and degranulation dose-dependently. To identify the molecular mechanisms underlying the inhibition of eicosanoid generation and degranulation by SF, we examined the effects of SF on the phosphorylation of $PLC{\gamma}1$, intracellular $Ca^{2+}$ influx, the translocation of cytosolic phospholipase $A_2$ ($cPLA_2$) and 5-LO, and on the phosphorylation of MAP kinases (MAPKs). SF was found to reduce intracellular $Ca^{2+}$ influx by inhibiting $PLC{\gamma}1$ phosphorylation and suppressing the nuclear translocations of $cPLA_2$ and 5-LO via the phosphorylations of MAPKs, including extracellular signal-regulated protein kinase-1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Taken together, these results suggest that SF may be useful for regulating mast cell-mediated inflammatory responses by inhibiting degranulation and eicosanoid generation.

Phospholipase C-mediated vasorelaxing action of melatonin in rat isolated aorta (흰쥐 대동맥에서 phospholipase C를 경유한 melatonin의 혈관 이완 작용)

  • Kim, Shang-Jin;Baek, Sung-Soo;Kang, Hyung-Sub;Kim, Jin-Shang
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.4
    • /
    • pp.507-515
    • /
    • 2005
  • Melatonin, the principal hormone of the vertebral pineal gland, participates in the regulation of cardiovascular system in vitro and in vivo. However, the effects of melatonin on vascular tissues are still vague. The aim of this study was to assess the relationship between phospholipase C (PLC) and nitric oxide synthase (NOS)/cyclic guanosine 3',5'-monophosphate (cGMP) signaling cascade in the relaxatory action of melatonin in isolated rat aorta. Melatonin induced a concentration-dependent relaxation in phenylephrine (PE)- and KCl-precontracted endothelium intact (+E) aortic rings. In KCl-precontracted +E aortic rings, the melatonin-induced vasorelaxation was not inhibited by endothelium removal or by pretreatment with NOS inhibitors, L-$N^G$-nitor-arginine (L-NNA) and L-$N^G$-nitor-arginine methyl ester (L-NAME), guanylate cyclase (GC) inhibitors, methylene blue (MB) and 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (ODQ). In PE-precontracted +E aortic rings, the melatonin-induced vasorelaxation was inhibited by endothelium removal or by pretreatment with L-NNA, L-NAME, MB, ODQ and 2-nitro-4-carboxyphenyl-n,n-diphenylcarbamate (NCDC). Moreover, in without endothelium (-E) aortic rings and in the presence of L-NNA, L-NAME, MB and ODQ in +E aortic rings, the melatonin-induced residual relaxations and residual contractile responses to PE were not affected by NCDC, a PLC inhibitor. It is concluded that melatonin can evoke vasorelaxation due to inhibition of PLC pathway through the protein kinase G activation of endothelial NOS/cGMP signaling cascade.

Phospholipase C-γ Activation by Direct Interaction with β-Tubulin Isotypes (베타 튜불린에 의한 포스포리파제 C-감마1의 활성화)

  • Lee, In-Bum;Kim, Sung-Kuk;Choi, Jang-Hyun;Suh, Pann-Ghill;Chang, Jong-Soo
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.612-617
    • /
    • 2006
  • Phosphoinositide-specific phospholipase $C-{\gamma}\;1\; (PLC-{\gamma}\;1)$ has pivotal roles in cellular signaling by producing second messengers, inositol 1,4,5-trisphosphate $(IP_3)$ and diacylglycerol (DG). Tubulin is a main component of microtubules and mitotic spindle fibers, which are composed of ${\alpha}-$ and ${\beta}-tubulin$ heterodimers in all eukaryotic cells. In humans, six ${\beta}-tubulin$ isotypes have been identified which display a distinct pattern of tissue expression. Previously we found that $PLC-{\gamma}\;1$ and one of four ${\beta}-tubulin$ isotypes including ${\beta}1$, ${\beta}2$, ${\beta}3$ and ${\beta}6$, colocalized in COS-7 cells and cotranslocated to the plasma membrane to activate $PLC-{\gamma}\;1$ upon agonist stimulation. In the present study, we demonstrate that the remaining two, tubulin ${\beta}4$ and ${\beta}5$, also showed a potential to activate $PLC-{\gamma}\;1$. The phosphatidylinositol 4,5-bisphosphate $(PIP_2)$ hydrolyzing activity of $PLC-{\gamma}\;1$ was substantially increased in the presence of purified ${\beta}4$ and ${\beta}5$ tubulin in vitro, whereas the activity was not promoted by bovine serum albumin, suggesting that tubulin ${\beta}4$ and ${\beta}5$ also activate $PLC-{\gamma}\;1$. Taken together, our results suggest that all the ${\beta}-tubulin$ isotype activates $PLC-{\gamma}\;1$ activity to regulate cellular signaling.

The Role of G protein in the Activation of Phospholipase C from Bovine Brain (소의 뇌조직 Phospholipase C의 활성화에 미치는 G-단백질의 역할)

  • Kim, Jung-Hye;Lee, Dong-Jin;Byun, Yeung-Ju
    • Journal of Yeungnam Medical Science
    • /
    • v.9 no.2
    • /
    • pp.288-301
    • /
    • 1992
  • The objective of the present study was to identify the characteristics of phospholipase C (PLC) isozymes purified from bovine brain and to investigate their interrelationship with G protein. The purified PLC isozymes ${\beta}$, ${\gamma}$ and ${\delta}$ were obtained and the characteristics of PLC activity on various concentrations of free $Ca^{2+}$ were observed. The activity of PLC was increased with increasing $Ca^{2+}$ concentration and the activity PLC ${\delta}$ was increased higher in the presence of phosphatidyl choline(PC) than in the abscence of PC. For vesicle formation as the structure of cell membrane, cholic acid and deoxycholic acid as detergent on phosphatidylinositol bisphosphate($PIP_2$) substrate containing PC were used, and then the activity of PLC isozymes were increased with increasing concentration of cholate, from 0.2% to 1% and were increased slightly in deoxycholate. In the $PIP_2$ containing phospholipid and glycolipid as brain extract, the activity of PLC isozymes were checked in 0.2%-1% cholic acid. The activities of PLC isoyzmes were continuously increased up to 1% cholic acid. The quantitation of PLC isozymes from several bovine organs by radioimmunoassay was made. Brain was the most sufficient organ in terms of amount of PLC ${\beta}$and ${\delta}$. A large amount of PLC ${\delta}$ was existed in adrenal gland. The binding capacity of GTPrS and G protein was observed and other observations of the binding effect of GTPrS-G protein and PLC monoclonal Ab-Protein A from tissue homogenate with PLC were made. From the observation the binding capacity was revealed the range of 0.11%-1.49%. The effects of each type of G protein on the percent activity of purified PLC isozymes were observed. From the observation, activities of isozymes were increased in $Go{\alpha}$ & Gmix, and the activities of PLC ${\beta}$ and ${\delta}$ were increased in $G{\beta}{\gamma}$ and $Gi{\alpha}$. Activities of PLC ${\beta}$ and ${\gamma}$ were decreased in $Gt{\alpha}$ but PLC ${\delta}$ increased.

  • PDF

곰팡이 분리주 MT60109가 생산하는 Phospholipase C 저해물질의 분리

  • Oh, Won-Keun;Lee, Hyun-Sun;Park, Chan-Sun;Ahn, Soon-Cheol;Ko, Hack-Ryong;Mheen, Tae-Ick;Ahn, Jong-Seog
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.6
    • /
    • pp.592-597
    • /
    • 1997
  • During the screening of inhibitors against phospholipase C (PLC) and the formation of inositol phosphates (IP$_{t}$) at NIH3T3${\gamma}$1 cells from microbial secondary metabolites, we selected a fungal strain MT60109 which was capable of producing an inhibitor. By the taxonomic studies, this fungus was identified as Pseudallescheria sp. MT60109 and an inhibitor of PLC was purified by BuOH extraction and chromatographic techniques from the culture broth of Pseudallescheria sp. MT60109. The inhibitor was identified as thielavin B by the physico-chemical properties and spectroscopic analysis of UV, FAB-MS, $^{1}$H, $^{13}$C-NMR, $^{1}$H-$^{1}$H COSY and HMBC. Thielavin B showed potent inhibitory activity against PLC purified from bovine brain with an IC$_{50}$ of 20 $\mu$M. And it also inhibited the formation of inositol phosphates in platelet-derived growth factor (PDGF) -stimulated NIH3T3${\gamma}$1 cells with an IC$_{50}$ of 20 $\mu$M.

  • PDF