• Title/Summary/Keyword: Phospholipase A

Search Result 538, Processing Time 0.031 seconds

Arachidonic Acid Liberated through Activation of $iPLA_2$ Mediates the Production of Reactive Oxygen Species and Apoptosis Induced by N-Ethylmaleimide in HepG2 Human Hepatoma Cells

  • Lee, Yong-Soo
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.242.2-243
    • /
    • 2002
  • We have previously reported that activation of $K^{+}$-$Cl^{-}$-cotransport (KCC) by N-ethylmaleimide (NEM) induces apoptosis through generation of reactive oxygen species (ROS) in HepG2 human hepatoblastoma cells. In this study we investigated the possible role of phospholipase $A_2$($PLA_2$)-arachidonic acid (AA) signals in the mechanism of the NEM actions. (omitted)

  • PDF

병원성 비브리오균의 용혈독소와 단백분해효소에 관한 연구

  • 박미연;김현진;장동석
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2002.10a
    • /
    • pp.177-178
    • /
    • 2002
  • 병윈성 비브리오균의 병원인자에는 hemolysin, protease, phospholipase A2, siderophore 외에도 콜레라균 만이 생산하는 cholera toxin 등이 있다. 이 중에서도 대부분의 병원성 비브리오균에서 생성되는 대표적인 인자는 hemolysin과 protease로 알려져 있다. Hemolysin은 혈액을 분해하는 독소로서 병원성 비브리오균의 분리ㆍ동정에 널리 이용 되고 있다. Hemolysin은 균의 배양초기에서 부터 서서히 생성되기 시작하여 대수증식기 말에 최대의 활성을 나타내며 안정기에 접어들면서 활성이 급격히 감소되는 것으로 보고되고 있다 (Kim et al., 1997). (중략)

  • PDF

Chlorpromazine Inhibits Store-operated Calcium Entry and Subsequent Norepinephrine Secretion in PC12 Cells

  • Park, Se-Young;Kim, Yong-Hyun;Lee, Yong-Kyu;Kim, Kyong-Tai
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.67-67
    • /
    • 1999
  • The effect of chlorpromazine on the store-operated Ca$\^$2+/ entry subsequently activated via the phospholipase C signaling pathway was investigated in PC12 cells. Chlorpromazine caused a rapid decline of the bradykinin-induced Ca$\^$2+/ increase to basal level without attenuating the peak level.(omitted)

  • PDF

Identification and Characterization of the Interaction between Heat-Shock Protein 90 and Phospholipase C-γ1

  • Kim, Su-Jeong;Kim, Myung-Jong;Kim, Yong;Si, Fu Chun;Ryu, Sung-Ho;Suh, Pann-Chill
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.97-102
    • /
    • 2000
  • Phosphoinositide-specific phospholipase C-${\gamma}1$ (PLC-${\gamma}1$) is a pivotal mediator in the signal transduction cascades induced by many growth factors. Using a yeast two-hybrid system, heat-shock protein 90 (Hsp90) was identified as a PLC-${\gamma}1$-binding protein. A co-immunoprecipitation experiment, using anti-PLC-${\gamma}1$ antibody, demonstrated an in vivo interaction between Hsp90 and PLC-${\gamma}1$ in the NIH-3T3 cells. The interaction in NIH-3T3 was unaffected by the PDGF treatment, inducing phosphorylation and activation of PLC-${\gamma}1$. Direct interaction between Hsp90 and PLC-${\gamma}1$ was confirmed by in vitro binding experiments using purified Hsp90 and PLC-${\gamma}1$. Furthermore, Hsp90 increased the $PIP_2$-hydrolyzing activity of PLC-${\gamma}1$ up to 2-fold at $0.1{\mu}M$ in vitro. Taken together, we show for the first time, the interaction of PLC-${\gamma}1$ with Hsp90, both in vivo and in vitro. We suggest that Hsp90 may play a role in PLC-${\gamma}1$-mediated signal transduction.

  • PDF

Effects of Inositol 1,4,5-triphosphate on Osteoclast Differentiation in RANKL-induced Osteoclastogenesis

  • Son, A-Ran;Kim, Min-Seuk;Jo, Hae;Byun, Hae-Mi;Shin, Dong-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.31-36
    • /
    • 2012
  • The receptor activator of NF-${\kappa}B$ ligand (RANKL) signal is an activator of tumor necrosis factor receptor-associated factor 6 (TRAF6), which leads to the activation of NF-${\kappa}B$ and other signal transduction pathways essential for osteoclastogenesis, such as $Ca^{2+}$ signaling. However, the intracellular levels of inositol 1,4,5-trisphosphate ($IP_3$) and $IP_3$-mediated cellular function of RANKL during osteoclastogenesis are not known. In the present study, we determined the levels of $IP_3$ and evaluated $IP_3$-mediated osteoclast differentiation and osteoclast activity by RANKL treatment of mouse leukemic macrophage cells (RAW 264.7) and mouse bone marrow-derived monocyte/macrophage precursor cells (BMMs). During osteoclastogenesis, the expression levels of $Ca^{2+}$ signaling proteins such as $IP_3$ receptors ($IP_3Rs$), plasma membrane $Ca^{2+}$ ATPase, and sarco/endoplasmic reticulum $Ca^{2+}$ ATPase type2 did not change by RANKL treatment for up to 6 days in both cell types. At 24 h after RANKL treatment, a higher steady-state level of $IP_3$ was observed in RAW264.7 cells transfected with green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of phospholipase C (PLC) ${\delta}$, a probe specifically detecting intracellular $IP_3$ levels. In BMMs, the inhibition of PLC with U73122 [a specific inhibitor of phospholipase C (PLC)[ and of $IP_3Rs$ with 2-aminoethoxydiphenyl borate (2APB; a non-specific inhibitor of $IP_3Rs$) inhibited the generation of RANKL-induced multinucleated cells and decreased the bone-resorption rate in dentin slice, respectively. These results suggest that intracellular $IP_3$ levels and the $IP_3$-mediated signaling pathway play an important role in RANKL-induced osteoclastogenesis.

Identification of Lys49-PLA2 from crude venom of Crotalus atrox as a human neutrophil-calcium modulating protein

  • Sultan, Md. Tipu;Li, Hong-Mei;Lee, Yong Zu;Lim, Soon Sung;Song, Dong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.177-183
    • /
    • 2016
  • We fortuitously observed a human neutrophil intracellular free-calcium concentration ($[Ca^{2+}]_i$) increasing activity in the commercially available phosphodiesterase I (PDE I), which is actually dried crude venom of Crotalus atrox. As this activity was not observed with another commercially available pure PDE I, we tried to find out the causative molecule(s) present in 'crude' PDE, and identified Lys49-phospholipase A2 (Lys49-PLA2 or K49-PLA2), a catalytically inactive protein which belongs to the phospholipase A2 family, by activity-driven three HPLC (reverse phase, size exclusion, reverse phase) steps followed by SDS-PAGE and LC-MS/MS. K49-PLA2 induced $Ca^{2+}$ influx in human neutrophils without any cytotoxic effect. Two calcium channel inhibitors, 2-aminoetoxydiphenyl borate (2-APB) ($30{\mu}M$) and SKF-96365 ($20{\mu}M$) significantly inhibited K49-PLA2-induced $[Ca^{2+}]_i$ increase. These results suggest that K49-PLA2 modulates $[Ca^{2+}]_i$ in human neutrophils via 2-APB- and SKF-96365-sensitive calcium channels without causing membrane disruption.

Biochemical Analysis of Physiological Stress Induced by High Frequency Sound Treatment in the Beet Armyworm, Spodoptera exigua (고주파 처리에 따른 파밤나방(Spodoptera exigua)의 생리적 스트레스의 생화학적 분석)

  • Kim, Yong-Gyun;Son, Ye-Rim;Seo, Sam-Yeol;Park, Bok-Ri;Park, Jung-A
    • Korean journal of applied entomology
    • /
    • v.51 no.3
    • /
    • pp.255-263
    • /
    • 2012
  • High frequency sounds disrupt physiological processes, such as feeding behavior, development and immune responses of Spodoptera exigua. We analyzed high frequency sounds with respect to biochemical changes in S. exigua. High frequency sound (5,000 Hz, 95 dB) suppressed protein synthesis and secretion of midgut epithelium. It also significantly inhibited a digestive enzyme activity of phospholipase $A_2$. The gene expression of three different heat shock proteins and apolipophorin III was altered, particularly in midgut tissue in response to high frequency sound treatments. High frequency sound treatments significantly increased sugar and lipid levels in hemolymph plasma. These results suggest that high frequency sounds are a physiological stress that induces biochemical changes in S. exigua.

The change of signaling pathway on the electrical stimulated contraction in streptozotocin-induced bladder dysfunction of rats

  • Han, Jong Soo;Min, Young Sil;Kim, Gil Hyung;Chae, Sang-hyun;Nam, Yoonjin;Lee, Jaehwi;Lee, Seok-Yong;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.577-584
    • /
    • 2018
  • Bladder dysfunction is a common complication of diabetes mellitus (DM). However, there have been a few studies evaluating bladder smooth muscle contraction in DM in the presence of pharmacological inhibitors. In the present study, we compared the contractility of bladder smooth muscle from normal rats and DM rats. Furthermore, we utilized pharmacological inhibitors to delineate the mechanisms underlying bladder muscle differences between normal and DM rats. DM was established in 14 days after using a single injection of streptozotocin (65 mg/kg, intraperitoneal) in Sprague-Dawley rats. Bladder smooth muscle contraction was induced electrically using electrical field stimulation consisting of pulse trains at an amplitude of 40 V and pulse duration of 1 ms at frequencies of 2-10 Hz. In this study, the pharmacological inhibitors atropine (muscarinic receptor antagonist), U73122 (phospholipase C inhibitor), DPCPX (adenosine $A_1$ receptor antagonist), udenafil (PDE5 inhibitor), prazosin (${\alpha}_1$-receptor antagonist), verapamil (calcium channel blocker), and chelerythrine (protein kinase C inhibitor) were used to pretreat bladder smooth muscles. It was found that the contractility of bladder smooth muscles from DM rats was lower than that of normal rats. In addition, there were significant differences in percent change of contractility between normal and DM rats following pretreatment with prazosin, udenafil, verapamil, and U73122. In conclusion, we suggest that the decreased bladder muscle contractility in DM rats was a result of perturbations in $PLC/IP_3$-mediated intracellular $Ca^{2+}$ release and PDE5 activity.

Antiplatelet Activity of 2-(4-Cyanophenyl) amino-1,4-naphthalenedione-3-pyridinium perchlorate (PQ5) (2-(4-시아노페닐) 아미노 -1,4-나프탈렌디온-3-피리디니움 퍼클로레이트 (PQ5)의 항혈소판작용)

  • 김도희;이수환;최소연;문창현;문창현;김대경;유충규
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.809-817
    • /
    • 1999
  • The effect of 2-(4-cyanophenyl)amino-1,4-naphthalenedione-3-pyridinium perchlorate (PQ5) on pla-telet aggregation and its action mechanisms were investigated with rat platelet. PQ5 inhibited the platelet aggregation induced by collagen ($6{\;}{\mu\textrm{g}}/ml$), thrombin (0.4 U/ml) and A23187 ($3{\mu}M$) in concentration-dependent manner with $IC_{50}$ values of 5.50, 25.89 and $37.12{\;}{\mu}M$, respectively. PQ5 also significantly reduced the thromboxane $A_2$ (TXA2) formation in a concentration dependent manner. The collagen-induced arachidonic acid (AA) release in [-3H]-AA incorporated platelet, an indication of the phospholipase $A_2$ activity, was decreased by PQ5 pretreatment PQ5 significantly inhibited the activity of thormboxane synthase only at high concentration ($100{\mu}M$), but did not affect the cyclooxygenase activity at all. Collagen-induced ATP release was significantly reduced by PQ5. Calcium-induced platelet aggregation experiment suggests that the elevation of intracellular free $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) by collagen stimulation is decreased by the pretreatment of PQ5, which is due to the inhibition of calcium release from intracellular store and influx from outside of the cell. PQ5 did not showed the effect of anticoagulation as prothrombin time (PT) or activated partial thromboplastin time (APTT). Form these results, it is suggested that PQ5 exerts its antiplatelet activity through the inhibition of the intracellular $Ca^{2+}$ mobilization and the decrease of the $TXA_2$ synthesis.

  • PDF