• Title/Summary/Keyword: Phospholipase A

Search Result 538, Processing Time 0.205 seconds

Improved Therapeutic Profiles of PLA2-Free Bee Venom Prepared by Ultrafiltration Method

  • Lee, Hyunkyoung;Pyo, Min-Jung;Bae, Seong Kyeong;Heo, Yunwi;Kim, Choul Goo;Kang, Changkeun;Kim, Euikyung
    • Toxicological Research
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2015
  • Bee venom (BV) has long been used in traditional Eastern and Western medicine for chronic inflammation, pain and skin therapy. Human exposure to BV, however, often causes unwanted adverse effects and is even fatal in some cases. Phospholipase $A_2$ ($PLA_2$) of BV is now suspected to play a key role in these adverse effects. We investigated the potential use of $PLA_2$-free bee venom (PBV) as a replacement for BV in cosmetic products. PBV prepared by molecular weight cut-off ultrafiltration exhibits a superior profile in comparison with regular BV, by inhibiting elastase activity and suppressing the induction of nitric oxide (NO) and metalloproteinase-9 (MMP-9), while retaining the effects of cell proliferation and protection against ultraviolet B (UVB)-induced damage in human dermal fibroblast cells. PBV thus appears to be more promising than BV as a cosmetic ingredient with a reduced potential for adverse reactions in the recipient.

Arachidonic Acid Mediates Apoptosis Induced by N-Ethylmaleimide in HepG2 Human Hepatoblastoma Cells

  • Lee, Yong-Soo
    • Biomolecules & Therapeutics
    • /
    • v.17 no.4
    • /
    • pp.379-387
    • /
    • 2009
  • We have previously reported that N-ethylmaleimide (NEM) induces apoptosis through activation of $K^+$, $Cl^-$-cotransport (KCC) in HepG2 human hepatoblastoma cells. In this study we investigated the possible role of phospholipase $A_2$ ($PLA_2$)-arachidonic acid (AA) signals in the mechanism of the NEM-induced apoptosis. In these experiments we used arachidonyl trifluoromethylketone ($AACOCF_3$), bromoenol lactone (BEL) and p-bromophenacyl bromide (BPB) as inhibitors of the calcium-dependent cytosolic $PLA_2$ ($cPLA_2$), the calcium-independent $PLA_2$ ($iPLA_2$) and the secretory $PLA_2$ ($sPLA_2$), respectively. BEL significantly inhibited the NEM-induced apoptosis, whereas $AACOCF_3$ and BPB did not. NEM increased AA liberation in a dose-dependent manner, which was markedly prevented only by BEL. In addition AA by itself induced $K^+$ efflux, a hallmark of KCC activation, which was comparable to that of NEM. The NEM-induced apoptosis was not significantly altered by treatment with indomethacin (Indo) and nordihydroguaiaretic acid (NDGA), selective inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX), respectively. Treatment with AA or 5,8,11,14-eicosatetraynoic acid (ETYA), a non-metabolizable analogue of AA, significantly induced apoptosis. Collectively, these results suggest that AA liberated through activation of $iPLA_2$ may mediate the NEMinduced apoptosis in HepG2 cells.

Pharmacological and Biochemical studies on Telescopium telescopium - a marine mollusk from the Mangrove regions

  • Samanta, SK;Adhikari, D;Karmakar, S;Dutta, A;Roy, A;Manisenthil, KT;Roy, D;Vedasiromoni, JR;Sen, T
    • Advances in Traditional Medicine
    • /
    • v.8 no.4
    • /
    • pp.386-394
    • /
    • 2008
  • The tissue extract (TTE) of a marine snail Telescopium telescopium, collected from the coastal regions of West Bengal, India, was extensively screened for pharmacological and biochemical properties. Telescopium telescopium (TTE) produced significant lysis of washed rat erythrocytes (both direct and indirect), produced haemorrhagic lesions in the skin and also released haemoglobin (in vitro tissue damage) from different tissue samples. TTE was found to produce pro-inflammatory effects when injected into the rat hind paw and also increased peritoneal vascular permeability. Furthermore, intravenous administration of TTE produced a decrease in blood pressure (hypotensive effect) in anaesthetized rats. The extract produced potent esterase activity, as was evident from the breakdown of FDA with subsequent release of fluorescein (in vitro). TTE also demonstrated prominent cholinesterase, phospholipase, phosphatase and protease activities.

Darapladib Binds to Lipoprotein-Associated Phospholipase A2 with Meaningful Interactions

  • Do, Kyoung-Rok;Kim, Chul;Chang, Byungha;An, Seong Soo A.;Shin, Jae-Min;Yea, Sang-Jun;Song, Mi-Young;No, Kyoung Tai;Lee, Jee-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.250-252
    • /
    • 2014
  • Lipoprotein-associated phospholipase A2 (Lp-$PLA_2$) is a crucial enzyme in atherosclerosis as a potential drug target. The most remarkable Lp-$PLA_2$ inhibitory drug is Darapladib. We determined the binding pose of Darapladib to Lp-$PLA_2$ through docking study. Darapladib formed two hydrogen bonding interactions with the side chain of Tyr160 and Gln352 and several pi-pi interactions with aromatic and aliphatic hydrophobic residues of Lp-$PLA_2$. It is known that the dietylpropan-amine moiety of Darapladib has influence on the improvement of its oral bioavailability and we supposed this in our docking results.

Phospholipase A2, reactive oxygen species, and lipid peroxidation in CNS pathologies

  • Adibhatla, Rao Muralikrishna;Hatcher, J.F.
    • BMB Reports
    • /
    • v.41 no.8
    • /
    • pp.560-567
    • /
    • 2008
  • The importance of lipids in cell signaling and tissue physiology is demonstrated by the many CNS pathologies involving deregulated lipid metabolism. One such critical metabolic event is the activation of phospholipase $A_2$ ($PLA_2$), which results in the hydrolysis of membrane phospholipids and the release of free fatty acids, including arachidonic acid, a precursor for essential cell-signaling eicosanoids. Reactive oxygen species (ROS, a product of arachidonic acid metabolism) react with cellular lipids to generate lipid peroxides, which are degraded to reactive aldehydes (oxidized phospholipid, 4-hydroxynonenal, and acrolein) that bind covalently to proteins, thereby altering their function and inducing cellular damage. Dissecting the contribution of $PLA_2$ to lipid peroxidation in CNS injury and disorders is a challenging proposition due to the multiple forms of $PLA_2$, the diverse sources of ROS, and the lack of specific $PLA_2$ inhibitors. In this review, we summarize the role of $PLA_2$ in CNS pathologies, including stroke, spinal cord injury, Alzheimer's, Parkinson's, Multiple sclerosis-Experimental autoimmune encephalomyelitis and Wallerian degeneration.

Phospholipase D Activity is Elevated in Hepatitis C Virus Core Protein-Transformed NIH 3T3 Mouse Fibroblast Cells (C형 간염바이러스의 core 단백질에 의해 암화된 쥐의 섬유아세포에서 phospholipase D 효소활성의 증가)

  • Kim, Joonmo;Jung, Eun-Young;Jang, Kyung-Lib;Min, Do-Sik
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.551-558
    • /
    • 2003
  • Hepatitis C Virus (HCV) is associated with a severe liver disease and increased frequency in the development of hepatocellular carcinoma. Overexpression of HCV core protein is known to transform fibroblast cells. Phospholipase D (PLD) activity is commonly elevated in response to mitogenic signals, and PLD has been also reported to be overexpressed and hyperactivated in some human cancer. The aim of this study was to understand how PLD can be regulated in HCV core protein-transformed NIH3T3 mouse fibroblast cells. We observed that in unstimulated state, basal PLD activity was higher in NIH3T3 cells overexpressing HCV core protein than in vector-transfected cells. Although expression of PLD and protein kinase C (PKC) in core protein-transformed cells was similar with that of control cells, phorbol 12-myristate 13-acetate (PMA), which is known to activate PKC, stimulated significantly PLD activity in core protein-transformed cells, compared with that of the control cells. PLD activity assay using PKC isozyme-specific inhibitor, and PKC translocation experiment showed that PKC-$\delta$ was mainly involved in the PMA-induced PLD activation in the core-transformed cells. Taken together, these results suggest that PLD might be implicated in core protein-induced transformation.

Effects of Ginsenosides on the Mechanism of Histamine Release in the Guinea Pig Lung Mast Cells Activated by Specific Antigen-Antibody Reactions

  • Ro, Jai-Youl;Ahn, Young-Soo;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.445-456
    • /
    • 1997
  • We previously reported that some components of ginsenosides decreased mediator releases evoked by the activation of mast cells with specific antigen-antibody reactions. This study aimed to assess the effects of ginsenosides ($Rb_2$, Re) on the mechanism of histamine release in the mast cell activation. We partially purified guinea pig lung mast cells by using enzyme digestion, the rough and the discontinuous percoll density gradient method. Mast cells were sensitized with $IgG_1$ and challenged with ovalbumin (OA). Histamine was assayed by fluorometric analyzer, leukotrienes by radioimmunoassay. Phospholipase D (PLD) activity was assessed more directly by the production of $[^3H]phosphatidylbutanol$ (PBut) which was produced by PLD-mediated transphosphatidylation in the presence of butanol. The amount of 1,2- diacylglycerol (DAG) were measured by the $[^3H]DAG$ labeled with $[^3H]palmitic$ acid or $[^3H]myristic$ acid. Pretreatment of $Rb_2$ ($300\;{\mu}g$) significantly decreased histamine release by 60%, but Re ($300\;{\mu}g$) increased histamine release by 34%. Leukotrienes release in $Rb_2$ was decreased by 40%, Re was not affected in the leukotrienes release during mast cell activations. An increasing PLD activity during mast cell activation was decreased by the dose-dependent manner in the pretreatment of $Rb_2$, but Re pretreatment facilitated the increased PLD activity during mast cell activation. The amount of DAG produced by phospholipase C (PLC) activity was decreased by $Rb_2$ pretreatment, but Re pretreatment was not affected. The amount of mass DAG was decreased by $Rb_2$ and Re pretreatment during mast cell activation. The data suggest that $Rb_2$ purified from Korean Red Ginseng Radix inhibits the DAG which is produced by the activation of mast cells with antigen-antibody reactions via both phosphatidylinositide-PLC and phosphatidylcholine-PLD systems, and then followed by the inhibition of histamine release. However, Re increases histamine release by stimulation of DAG production, which is mediated by phosphatidylcholine-PLD system rather than by phosphatidylinositide-PLC system, but inhibits the mass DAG production. Thus, it could be inferred that other mechanisms play a role in the increase of histamine release during mast cell activation.

  • PDF

Regulation of Phospholipase D by CoCl2 in Human Glioblastoma Cells (인간 교세포주에서 CoCl2에 의한 phospholipase D의 조절기전)

  • Lee, Seung-Hoon;Min, Gye-Sik;Min, Do-Sik
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.691-698
    • /
    • 2006
  • Phospholipase D (PLD) is known to play an important role in a variety of cells. However, little is known about $CoCl_2-mediated$ PLD signaling. In this study we demonstrated for the first time that $CoCl_2$ stimulates PLD activity and increases expression of cyclooxygenase-2 (COX-2), which is known to mediate inflammatory reaction. $CoCl_2-induced$ PLD activity was assessed by measuring the formation of $[^3H]$ phosphatidylbutanol (PtdBut), the product of PLD-mediated transphosphatidylation, in the presence of 1-butanol. To study mechanism of PLD signaling induced by $CoCl_2$, U87 human glioblastoma cells were stimulated by $CoCl_2$ and regulators of PLD activity induced by $CoCl_2$ were investigated using several inhibitors of signaling proteins. Moreover, PLD activation by $CoCl_2$ increased not only expression of COX-2 protein but also COX-2 promoter activity. In summary, these results suggest that $CoCl_2$ increases expression of COX-2 protein via PLD in human U87 glioblastoma cells.