Browse > Article
http://dx.doi.org/10.4062/biomolther.2009.17.4.379

Arachidonic Acid Mediates Apoptosis Induced by N-Ethylmaleimide in HepG2 Human Hepatoblastoma Cells  

Lee, Yong-Soo (College of Pharmacy, Duksung Women's University)
Publication Information
Biomolecules & Therapeutics / v.17, no.4, 2009 , pp. 379-387 More about this Journal
Abstract
We have previously reported that N-ethylmaleimide (NEM) induces apoptosis through activation of $K^+$, $Cl^-$-cotransport (KCC) in HepG2 human hepatoblastoma cells. In this study we investigated the possible role of phospholipase $A_2$ ($PLA_2$)-arachidonic acid (AA) signals in the mechanism of the NEM-induced apoptosis. In these experiments we used arachidonyl trifluoromethylketone ($AACOCF_3$), bromoenol lactone (BEL) and p-bromophenacyl bromide (BPB) as inhibitors of the calcium-dependent cytosolic $PLA_2$ ($cPLA_2$), the calcium-independent $PLA_2$ ($iPLA_2$) and the secretory $PLA_2$ ($sPLA_2$), respectively. BEL significantly inhibited the NEM-induced apoptosis, whereas $AACOCF_3$ and BPB did not. NEM increased AA liberation in a dose-dependent manner, which was markedly prevented only by BEL. In addition AA by itself induced $K^+$ efflux, a hallmark of KCC activation, which was comparable to that of NEM. The NEM-induced apoptosis was not significantly altered by treatment with indomethacin (Indo) and nordihydroguaiaretic acid (NDGA), selective inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX), respectively. Treatment with AA or 5,8,11,14-eicosatetraynoic acid (ETYA), a non-metabolizable analogue of AA, significantly induced apoptosis. Collectively, these results suggest that AA liberated through activation of $iPLA_2$ may mediate the NEMinduced apoptosis in HepG2 cells.
Keywords
N-Ethylmaleimide; Arachidonic acid; Apoptosis; $K^+$; $Cl^-$-cotransport; Phospholipase $A_2$; HepG2 cell;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Martin, S., Phillips, D. C., Szekely-Szucs, K., Elghazi, L., Desmots, F. and Houghton, J. A. (2005). Cyclooxygenase-2 inhibition sensitizes human colon carcinoma cells to TRAIL-induced apoptosis through clustering of DR5 and concentrating death-inducing signaling complex components into ceramide-enriched caveolae. Cancer Res. 65, 11447-11458.   DOI   ScienceOn
2 Rivera, C., Voipio, J., Payne, J. A., Ruusuvuori, E., Latineen, H., Lamsa, K., Pirvola, U., Saarma, M. and Kaila, K. (1999). The $K^+/Cl^-$co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397, 251-255.   DOI   ScienceOn
3 Shen, M. R., Lin, A. C., Hsu, Y. M., Chang, T. J., Tang, M. J., Alper, S. L., Ellory, J. C. and Chou, C. Y. (2004). Insulin-like growth factor 1 stimulates KCl cotransport, which is necessary for invasion and proliferation of cervical cancer and ovarian cancer cells. J. Biol. Chem. 279, 40017-40025.   DOI   ScienceOn
4 Waite, M. (1996). Phospholipases. In Biochemistry of lipids, lipoproteins and membranes. (D. E., Vance, J. E. Vance, Eds.), pp. 211-236. Elsevier Science Publishing Co, New York.
5 Wolf, M. J., Wang, J., Turk, J. and Gross, R. W. (1997). Depletion of intracellular calcium stores activates smooth muscle cell calcium-independent phospholipase $A_2$. A novel mechanism underlying arachidonic acid mobilization. J. Biol. Chem. 272, 1522-1526.   DOI   ScienceOn
6 Hoshino, S., Kikkawa, S., Takahashi, K., Itoh, H., Kaziro, Y., Kawasaki, H., Suzuki, K., Katada, T. and Ui, M. (1990). Identification of sites for alkylation by N-ethylmaleimide and pertussis toxin-catalyzed ADP-ribosylation on GTP-binding proteins. FEBS Lett. 276, 227-231.   DOI   ScienceOn
7 Jayadev, S., Linardic, C. M. and Hannun, Y. A. (1994) Identification of arachidonic acid as a mediator of sphingomyelin hydrolysis in response to tumor necrosis factor $\alpha$. J. Biol. Chem. 269, 5757-5763.
8 Kim, J. A. and Lee, Y. S. (2001). Role of reactive oxygen species generated by NADPH oxidase in the mechanism of activation of $K^+$-$Cl^-$-cotransport by N-ethylmaleimide in HepG2 human hepatoma cells. Free Radic. Res. 35, 43-53.   DOI   ScienceOn
9 Leslie, C. C. (2004). Regulation of arachidonic acid availability for eicosanoid production. Biochem. Cell. Biol. 82, 1-17.   DOI   ScienceOn
10 Narendra Sharath Chandra, J. N., Ponnappa, K. C., Sadashiva, C. T., Priya, B. S., Nanda, B. L., Gowda, T. V., Vishwanath, B. S. and Rangappa, K. S. (2007). Chemistry and structural evaluation of different phospholipase A2 inhibitors in arachidonic acid pathway mediated inflammation and snake venom toxicity. Curr. Top. Med. Chem. 7, 787-800.   DOI   ScienceOn
11 Pompeia, C., Lima, T. and Curi, R. (2003). Arachidonic acid cytotoxicity: can arachidonic acid be a physiological mediator of cell death? Cell. Biochem. Funct. 21, 97-104.   DOI   ScienceOn
12 Harizi, H., Corcuff, J. B. and Gualde, N. (2008). Arachidonicacid- derived eicosanoids: roles in biology and immunopathology. Trends Mol. Med. 14, 461-469.   DOI   ScienceOn
13 Adragna, N. C., Ferrell, C. M., Zhang, J., Di Fulvio, M., Temprana, C. F., Sharma, A., Fyffe, R. E., Cool, D. R. and Lauf, P. K. (2006). Signal transduction mechanisms of $K^+-Cl^−$: cotransport regulation and relationship to disease. Acta Physiol. (Oxf) 187, 125-139.   DOI   ScienceOn
14 Block, K., Ricono, J. M., Lee, D. Y., Bhandari, B., Choudhury, G. G., Abboud, H. E. and Gorin, Y. (2006). Arachidonic acid-dependent activation of a $p22^{phox}$-based NAD(P)H oxidase mediates angiotensin II-induced mesangial cell protein synthesis and fibronectin expression via Akt/PKB. Antioxid. Redox Signal. 8, 1497-1508.   DOI   ScienceOn
15 Fulda, S. and Debatin, K. M. (2004). Targeting apoptosis pathways in cancer therapy. Curr. Cancer Drug Targets 4, 569-576.   DOI   ScienceOn
16 Yellaturu, C. R., Bhanoori, M., Neeli, I. and Rao, G. N. (2002). N-Ethylmaleimide inhibits platelet-derived growth factor BB-stimulated Akt phosphorylation via activation of protein phosphatase 2A. J. Biol. Chem. 277, 40148-40155.   DOI   ScienceOn
17 Weil-Maslansky, E., Gutman, Y. and Sasson, S. (1994). Insulin activates furosemide-sensitive $K^+$ and $Cl^-$ uptake system in BC3H1 cells. Am. J. Physiol. 267, C932-C939.   DOI
18 Wurster, S., Nakov, R., Allgaier, C. and Hertting, G. (1990). Involvement of N-ethylmaleimide-sensitive G proteins in the modulation of evoked [$^3H$]noradrenaline release from rabbit hippocampus synaptosomes. Neurochem. Int. 17, 149-155.   DOI   ScienceOn
19 Yan, G. X., Chen, J., Yamada, K. A., Kleber, A. G. and Corr, P. B. (1996). Contribution of shrinkage of extracellular space to extracellular $K^+$ accumulation in myocardial ischaemia of the rabbit. J. Physiol. (London) 490, 215-228.   DOI
20 Yellaturu, C. R. and Rao, G. N. (2003). A requirement for calcium- independent phospholipase $A_2$ in thrombin-induced arachidonic acid release and growth in vascular smooth muscle cells. J. Biol. Chem. 278, 43831-43837.   DOI   ScienceOn
21 Shen, M. R., Chou, C. Y. and Ellory, J. C. (2000). Volume-sensitive KCl cotransport associated with human cervical carcinogenesis. Pflugers Arch. 440, 751-760.   DOI   ScienceOn
22 Ramanadham, S., Song, H., Bao, S., Hsu, F. F., Zhang, S., Ma, Z., Jin, C. and Turk, J. (2004). Islet complex lipids: involvement in the actions of group VIA calcium-independent phospholipase A2 in beta-cells. Diabetes 53 Suppl 1, S179-185.   DOI   ScienceOn
23 Rodriguez-Nieto, S. and Zhivotovsky, B. (2006). Role of alterations in the apoptotic machinery in sensitivity of cancer cells to treatment. Curr. Pharm. Des. 12, 4411-4425.   DOI   ScienceOn
24 Scorrano, L., Penzo, D., Petronilli, V., Pagano, F. and Bernardi, P. (2001). Arachidonic acid causes cell death through the mitochondrial permeability transition. Implications for tumor necrosis factor-$\alpha$ aopototic signaling. J. Biol. Chem. 276, 12035-12040.   DOI   ScienceOn
25 Van Der Zee, L., Nelemans, A. and Den Hertog, A. (1995). Arachidonic acid is functioning as a second messenger in activating the $Ca^{2+}^ entry process on $H_1$-histaminoceptor stimulation in $DDT_1$ MF-2 cells. Biochem. J. 305, 859-864.   DOI
26 Shin, S. M. and Kim, S. G. (2009). Inhibition of arachidonic acid and iron-induced mitochondrial dysfunction and apoptosis by oltipraz and novel 1,2-dithiole-3-thione congeners. Mol. Pharmacol. 75, 242-253.   DOI   ScienceOn
27 Song, Z. and Steller, H. (1999). Death by design: mechanism and control of apoptosis. Trends Cell. Biol. 9, 49-52.   DOI   ScienceOn
28 Stuart, J. and Ellory, J. C. (1988). Rheological consequences of erythrocyte dehydration. Br. J. Haematol. 69, 1-4.   DOI   ScienceOn
29 Meves, A., Stock, S. N., Beyerle, A., Pittelkow, M. R. and Peus, D. (2001). $H_2O_2$ mediates oxidative stress-induced epidermal growth factor receptor phosphorylation. Toxicol. Lett. 122, 205-214.   DOI   ScienceOn
30 Minta, A. and Tsien, R. Y. (1989). Fluorescent indicators for cytosolic sodium. J. Biol. Chem. 264, 19449-19457.
31 Monjazeb, A. M., High, K. P., Koumenis, C. and Chilton, F. H. (2005). Inhibitors of arachidonic acid metabolism act synergistically to signal apoptosis in neoplastic cells. Prostaglandins Leukot. Essent. Fatty Acids 73, 463-474.   DOI   ScienceOn
32 Nakanishi, M. and Rosenberg, D. W. (2006) Roles of $cPLA_2{\alpha}$ and arachidonic acid in cancer. Biochim. Biophys. Acta 1761, 1335-1343.   DOI   ScienceOn
33 Perry, P. B. and O'Neill, W. C. (1993). Swelling-activated K fluxes in vascular endothelial cells: volume regulation via K-Cl cotransport and K channels. Am. J. Physiol. 265, C763-C769.   DOI
34 Neve, E. P., Boyer, C. S. and Moldeus, P. (1995). N-ethyl maleimide stimulates arachidonic acid release through activation of the signal-responsive phospholipase $A_2$ in endothelial cells. Biochem. Pharmacol. 49, 57-63.   DOI   ScienceOn
35 Olivieri, O., Vitoux, D., Galacteros, F., Bachir, D., Blouquit, Y., Beuzard Y. and Brugnara, C. (1992). Hemoglobin variants and activity of ($K^+Cl^-$)cotransport system in human erythrocytes. Blood 79, 793-797.
36 Papenfuss, K., Cordier, S. M. and Walczak, H. (2008). Death receptors as targets for anti-cancer therapy. J. Cell. Mol. Med. 12, 2566-2585.   DOI   ScienceOn
37 Joiner, C. H. (1993). Cation transport and volume regulation in sickle red blood cells. Am. J. Physiol. 264, C251-C270.   DOI
38 Kidd, V. J. (1998). Proteolytic activities that mediate apoptosis. Annu. Rev. Physiol. 60, 533-573.   DOI   ScienceOn
39 Kim, C., Kim, J. Y. and Kim, J. H. (2008). Cytosolic phospholipase $A_2$, lipoxygenase metabolites, and reactive oxygen species. BMB Rep. 41, 555-559.
40 Kim, J. A., Kang, Y. S. and Lee, Y. S. (2001). Involvement of $K^+$-$Cl^-$-cotransport in the apoptosis induced by N-ethylmaleimide in HepG2 human hepatoblastoma cells. Eur. J. Pharmacol. 418, 1-5.   DOI   ScienceOn
41 Kornblau, S. M. (1998). The role of apoptosis in the pathogenesis, prognosis, and therapy of hematologic malignancies. Leukemia 12, S41-46.
42 Lowe, S. W. and Lin, A. W. (2000). Apoptosis in cancer. Carcinogenesis 21, 485-495.   DOI   ScienceOn
43 Lauf, P. K., Bauer, J., Adragna, N. C., Fujise, H., Zade-Oppen, A. M. M., Ryu, K. H. and Delpire, E. (1992). Erythrocyte K-Cl cotransport: properties and regulation. Am. J. Physiol. 263, C917-C932.   DOI
44 Leoncini, G. and Signorello, M. G. (1999a). N-ethylmaleimide inhibition of thrombin-induced platelet aggregation. Biochem. Pharmacol. 58, 1293-1299.   DOI   ScienceOn
45 Leoncini, G. and Signorello, M. G. (1999b). N-ethylmaleimidestimulated arachidonic acid release in human platelets. Biochem. Pharmacol. 57, 785-791.   DOI   ScienceOn
46 Wang, X. W. (1999). Role of p53 and apoptosis in carcinogenesis. Anticancer Res. 19, 4759-4771.
47 Cossins, A. R. and Gibson, J. S. (1997). Volume-sensitive transport systems and volume homeostasis in vertebrate red blood cells. J. Exp. Biol. 200, 343-352.
48 Curnutte, J. T. (1985). Activation of human neutrophil nicotinamide adenine dinucleotide phosphate, reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic acid in a cell-free system. J. Clin. Invest. 75, 1740-1743.   DOI
49 Ehleben, W., Porwol, T., Fandrey, J., Kummer, W. and Acker, H. (1997). Cobalt and desferrioxamine reveal crucial members of the oxygen sensing pathway in HepG2 cells. Kidney Int. 51, 483-491.   DOI   ScienceOn
50 Ellison, D. H., Velazquez, H. and Wright, F. S. (1985). Stimulation of distal potassium secretion by low lumen chloride in the presence of barium. Am. J. Physiol. 248, F638-F649.
51 Jenkins, C. M., Cedars, A. and Gross, R. W. (2009). Eicosanoid signalling pathways in the heart. Cardiovasc. Res. 82, 240-249.   DOI   ScienceOn
52 Greger, R. and Schlatter, E. (1983). Properties of the basolateral membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. A model for secondary active chloride transport. Pflugers Archiv. 396, 325-334.   DOI   ScienceOn
53 Hii, C. S. and Ferrante, A. (2007). Regulation of the NADPH oxidase activity and anti-microbial function of neutrophils by arachidonic acid. Arch. Immunol. Ther. Exp. (Warsz) 55, 99-110.   DOI
54 Hsu, Y. M., Chen, Y. F., Chou, C. Y., Tang, M. J., Chen, J. H., Wilkins, R. J., Ellory, J. C. and Shen, M. R. (2007a). KCl cotransporter- 3 down-regulates E-cadherin/beta-catenin complex to promote epithelial-mesenchymal transition. Cancer Res. 67, 11064-11073.   DOI   ScienceOn
55 Hsu, Y. M., Chou, C. Y., Chen, H. H., Lee, W. Y., Chen, Y. F., Lin, P. W., Alper, S. L., Ellory, J. C. and Shen, M. R. (2007b). IGF-1 upregulates electroneutral K-Cl cotransporter KCC3 and KCC4 which are differentially required for breast cancer cell proliferation and invasiveness. J. Cell. Physiol. 210, 626-636.   DOI   ScienceOn
56 Adragna, N. C., Di Fulvio, M. and Lauf, P.K. (2004). Regulation of K-Cl cotransport: from function to genes. J. Membr. Biol. 201, 109-137.   DOI
57 Bocca, C., Bozzo, F., Martinasso, G., Canuto, R. A. and Miglietta, A. (2008). Involvement of PPAR$\alpha$ in the growth inhibitory effect of arachidonic acid on breast cancer cells. Br. J. Nutr. 100, 739-750.   DOI   ScienceOn
58 Adragna, N. C., White, R. E., Orlov, S. N. and Lauf, P. K. (2000). K-Cl cotransport in vascular smooth muscle and erythrocytes: possible implication in vasodilation. Am. J. Physiol. 278, C381-C390.   DOI
59 Amlal, H., Paillard, M. and Bichara, M. (1994). $Cl^-$9-dependent $NH_4^+$ transport mechanisms in medullary thick ascending limb cells. Am. J. Physiol. 267, C1607-C1615.   DOI
60 Bakalova, R., Matsura, T. and Kanno, I. (2002). The cyclooxygenase inhibitors indomethacin and rofecoxib reduce regional cerebral blood flow evoked by somatosensory stimulation in rats. Exp. Biol. Med. 227, 465-473.   DOI
61 Bombeli, T., Karsan, A., Tait, J. F. and Harlan, J. M. (1997). Apoptotic vascular endothelial cells become procoagulant. Blood 89, 2429-2442.
62 Claria, J. (2006). Regulation of cell proliferation and apoptosis by bioactive lipid mediators. Recent Pat. Anticancer Drug Discov. 1, 369-382.
63 Cool, R. H., Merten, E., Theiss, C. and Acker, H. (1998). Rac1, and not Rac2, is involved in the regulation of the intracellular hydrogen peroxide level in HepG2 cells. Biochem. J. 332, 5-8.   DOI