• Title/Summary/Keyword: Phosphoenolpyruvate (PEP)

Search Result 9, Processing Time 0.025 seconds

Imitation of Phosphoenolpyruvate to Oxaloacetate Pathway Regulation of Rumen Bacteria in Enteric Escherichia coli and Effect on C4 Metabolism (반추위 미생물이 가진 Phosphoenolpyruvate에서 Oxaloacetate 경로 조절기작의 대장균에서의 모사와 C4대사의 영향)

  • Kwon Yeong-Deok;Kwon Oh-Hee;Lee Heung-Shick;Kim Pil
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.35-39
    • /
    • 2006
  • One of the fermentative metabolism of enteric Escherichia coli was imitated after rumen bacteria, which have high C4 metabolism. E. coli expresses phosphenolpyruvate carboxylase (PPC) for the pathway between phosphoenolpyruvate (PEP) and oxaloacetate (OAA) during glycolytic condition while expresses phosphoenolpyruvate carboxykinase (PCK) during gluconeogenic condition. In contrast to enteric E. coli, rumen bacteria express the PEP-OAA pathway only by PCK. To verify the effect of the regulation imitation on the C4 metabolism of E. coli, PPC-deficient E. coli strain with PCK expression in glycolytic condition was constructed. The PEP-OAA regulation modified E. coli strain increased 2.5-folds higher C4 metabolite than the wild type strain. The potential use of C4 metabolism by regulation control is discussed.

Engineering and Characterization of the Isolated C-Terminal Domain of 5-Enolpyruvylshikimate-3-phosphate (EPSP) Synthase

  • Kim, Hak-Jun;Kim, Hyun-Woo;Kang, Sung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1385-1389
    • /
    • 2007
  • 5-Enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the formation of EPSP and inorganic phosphate from shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP) in the biosynthesis of aromatic amino acids. To delineate the domain-specific function, we successfully isolated the discontinuous C-terminal domain (residues 1-21, linkers, 240-427) of EPSP synthase (427 residues) by site-directed mutagenesis. The engineered C-terminal domains containing no linker (CTD), or with gly-gly ($CTD^{GG}$) and gly-ser-ser-gly ($CTD^{GSSG}$) linkers were purified and characterized as having distinct native-like secondary and tertiary structures. However, isothermal titration calorimetry (ITC), $^{15}N-HSQC$,\;and\;^{31}P-NMR$ revealed that neither its substrate nor inhibitor binds the isolated domain. The isolated domain maintained structural integrity, but did not function as the half of the full-length protein.

Modulation of Phosphoenolpyruvate Metabolism of Anaerobiospirillum succiniciproducens ATCC 29305

  • Yoo, Jin Young;J. Gregory Zeikus
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.43-49
    • /
    • 1996
  • Modulation of the catabolic PEP-pathway of Anaerobiospirillum succiniciproducens was tried using some enzymatic inhibitors such as gases and chemicals in order to enhance succinic acid production. 10$\%$ CO increased the succinic acid/acetic acid (S/A) ratio but inhibited growth as well as production of succinic and acetic acid. Hydrogen gas also increased the S/A ratio and inhibited the synthesis of pyruvate: ferredoxin oxidoreductase when used in mixture with $CO_2$, Catabolic repression by acetic, lactic and formic acid was not recognized and other modulators such as glyoxylate, pyruvate derivatives, arsenic salt, phosphate and sulfate were shown not to be effective. Magesium carbonate was shown effective for repressing acetate production. Palmitic acid, myristic acid and phenylalanine did not affect acetate production but carprylic acid completely inhibited growth.

  • PDF

Metabolic Flux Distribution in a Metabolically Engineered Escherichia coli Strain Producing Succinic Acid

  • Hong, Soon-Ho;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.496-501
    • /
    • 2000
  • Escherichia cole NZN111, which is known as a pfl ldhA double mutant strin, was metabolically engineered to produce succinic acid by overexpressing malic enzyme into the E. coli controlled by a trc promoter. Fermentation studies were carried out in a LB medium by first growing cells aerobically to an $OD_{600}$ of 5. At this point, 0.01 mM IPTG was added to induce the overexpression of malic enzyme and the agitation speed was gradually lowered. When the culture $OD_{600}$ reached 11, a complete anaerobic condition was achieved by flushing with a $CO_3-H_2$ gas mixture. When NZN111(pTrcML) was cultured at $37^{\circ}C$, the final succinic acid concentration of 2.8 g/l could be obtained after 30 h of anaerobic cultivation. The fermentation results were analyzed by the calculation of metabolic fluxes. Metaolic flux analysis showed that about 85% of phosphoenolpyruvate (PEP) was converted to pyruvate, and further converted to malic acid by malic enzyme.

  • PDF

Inhibitory Mechanism of Novel Inhibitors of UDP-N-Acetylglucosamine Enolpyruvyl Transferase from Haemophilus influenzae

  • Jin, Bong-Suk;Han, Seong-Gu;Lee, Won-Kyu;Ryoo, Sung-Weon;Lee, Sang-Jae;Suh, Se-Won;Yu, Yeon-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1582-1589
    • /
    • 2009
  • Bacterial UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) catalyzes the transfer of enolpyruvate from phosphoenolpyruvate (PEP) to uridine diphospho-N-acetylglucosamine (UNAG), which is the first step of bacterial cell wall synthesis. We identified thimerosal, thiram, and ebselen as effective inhibitors of Haemophilus influenzae MurA by screening a chemical library that consisted of a wide range of bioactive compounds. When MurA was preincubated with these inhibitors, their 50% inhibitory concentrations ($IC_{50}s$) were found to range from 0.1 to $0.7\;{\mu}M$. In particular, thimerosal suppressed the growth of several different Gram-negative bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhimurium at a concentration range of $1-2\;{\mu}g/ml$. These inhibitors covalently modified the cysteine residue near the active site of MurA. This modification changed the open conformation of MurA to a more closed configuration, which may have prevented the necessary conformational change from occurring during the enzyme reaction.

Characterization of a Bifunctional HPr Kinase/Phosphorylase from Leuconostoc mesenteroides SY1

  • Park, Jae-Yong;Lee, Kang-Wook;Lee, Ae-Ran;Jeong, Woo-Ju;Chun, Ji-Yeon;Lee, Jong-Hoon;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.746-753
    • /
    • 2008
  • The hprK gene encoding bifunctional HPrK/P (kinase/phosphorylase) was cloned from L. mesenteroides SY1, a strain isolated from kimchi. hprK was transcribed as a monocistronic gene. His-tagged HPrH16A and HPrK/P were produced in E. coli BL21 (DE3) using pET26b(+) and purified. HPrK/P phosphorylation assay with purified proteins showed that the kinase activity of HPrK/P increased at slightly acidic pHs. Divalent cations such as $Mg^{2+}$ and $Mn^{2+}$ and glycolytic intermediates such as fructose-1, 6-bisphosphate (FBP) and phosphoenolpyruvate (PEP) increased the kinase activity of HPrK/P, but inorganic phosphate strongly inhibited it. Kinetic studies for the kinase activity of HPrK/P showed that the apparent $K_m$ values were 0.18 and $14.57{\mu}M$ for ATP and HPr, respectively. The $K_m$ value for the phosphorylase activity of HPrK/P was $14.16{\mu}M$ for P-Ser-HPr (HPr phosphorylated at the serine residue).

Formation of Succinic Acid by Klebsiella pneumoniae MCM B-325 Under Aerobic and Anaerobic Conditions

  • Thakker Chandresh;Bhosale Suresh;Ranade Dilip
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.870-879
    • /
    • 2006
  • The present study describes the formation of succinic acid by a nonvirulent, highly osmotolerant Klebsiella pneumoniae strain SAP (succinic acid producer), its profile of metabolites, and enzymes of the succinate production pathway. The strain produced succinate along with other metabolites such as lactate, acetate, and ethanol under aerobic as well as anaerobic growth conditions. The yield of succinate was higher in the presence of $MgCO_3$ under $N_2$ atmosphere as compared with that under $CO_2$ atmosphere. Analysis of intracellular metabolites showed the presence of a smaller PEP pool than that of pyruvate. Oxaloacetate, citrate, and $\alpha$-ketoglutarate pools were considerably larger than those of isocitrate and fumarate. In order to understand the synthesis of succinate, the enzymes involved in end-product formation were studied. Levels of phosphoenolpyruvate carboxykinase, fumarate reductase, pyruvate kinase, and acetate kinase were higher under anaerobic growth conditions. Based on the profiles of the metabolites and enzymes, it was concluded that the synthesis of succinate took place via oxaloacetate, malate, and fumarate in the strain under anaerobic growth conditions. The strain SAP showed potential for the bioconversion of fumarate to succinate under $N_2$ atmosphere in the presence of $MgCO_3$. At an initial fumarate concentration of 10 g/l, 7.1 g/l fumarate was converted to 7 g/l succinate with a molar conversion efficiency of 97.3%. The conversion efficiency and succinate yield were increased in the presence of glucose. Cells grown on fumarate contained an 18-fold higher fumarate reductase activity as compared with the activity obtained when grown on glucose.

Purification and Properties of Glucose 6-Phosphate Dehydrogenase from Aspergillus aculeatus

  • Ibraheem, Omodele;Adewale, Isaac Olusanjo;Afolayan, Adeyinka
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.584-590
    • /
    • 2005
  • Glucose 6-phosphate dehydrogenase (EC 1.1.1.49) was purified from Aspergillus aculeatus, a filamentous fungus previously isolated from infected tongue of a patient. The enzyme, apparently homogeneous, had a specific activity of $220\;units\;mg^{-1}$/, a molecular weight of $105,000{\pm}5,000$ Dal by gel filtration and subunit size of $52,000{\pm}1,100$ Dal by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The substrate specificity was extremely strict, with glucose 6-phosphate (G6P) being oxidized by nicotinamide adenine dinucleotide phosphate (NADP) only. At assay pH of 7.5, the enzyme had $K_m$ values of $6\;{\mu}m$ and $75\;{\mu}m$ for NADP and G6P respectively. The $k_{cat}$ was $83\;s^{-1}$. Steady-state kinetics at pH 7.5 produced converging linear Lineweaver-Burk plots as expected for ternary-complex mechanism. The patterns of product and dead-end inhibition suggested that the enzyme can bind NADP and G6P separately to form a binary complex, indicating a random-order mechanism. The enzyme was irreversibly inactivated by heat in a linear fashion, with G6P providing a degree of protection. Phosphoenolpyruvate (PEP), adenosinetriphosphate (ATP), and fructose 6-phosphate (F6P), in decreasing order, are effective inhibitors. Zinc and Cobalt ions were effective inhibitors although cobalt ion was more potent; the two divalent metals were competitive inhibitors with respect to G6P, with $K_i$ values of $6.6\;{\mu}m$ and $4.7\;{\mu}m$ respectively. It is proposed that inhibition by divalent metal ions, at low NADPH /NADP ratio, is another means of controlling pentosephosphate pathway.

Studies on Enzymatic Characteristic′s of Adenylate Kinase from Baker′s Yeast (제빵효모 Adenylate Kinase의 효소학적 특성에 관하여)

  • ;Takahisa Ohta;Hiroshi Sakai
    • Microbiology and Biotechnology Letters
    • /
    • v.12 no.4
    • /
    • pp.277-283
    • /
    • 1984
  • In the forward reaction (ADP formation) of the adenylate kinase from baker's yeast, dissociation constants from binary complexes are higher by a factor of about 4 times then those from at ternary complexes. In the reverse reaction, dissociation constants from the binary complexes are 2 times higher then those from the ternary complexes. The enzyme showed activities against various nucleotide triphospate in following orders; ATP 100, UTP 18, ITP 9 and GTP 5, of the necleotide monophosphate. only dAMP showed 33% activity of that AMP as phosphate acceptor. Divalent cations were required in enzyme reaction in following orders; $Mg^{2+}$ 100, Co$^{2+}$ 57, Mn$^{2+}$ 54, $Ca^{2+}$ 51, Ni$^{2+}$ 10 and Sn$^{2+}$ 6. AMP, as a substrate inhibitor, competitively inhibited the adenylate kinase at pH 7.2 or 8.0. Inhibition constants of the enzyme showed greater dependence on the pH of the reaction mixture, which was the lower Ki values under higher pH. Adenosine pentaphospho adenosine was competive inhibitor to the enzyme against all substrate, and it showed the same Ki values, 2.9mM. Further, PEP was competive inhibitor with respect to AMP and non-competive inhibitor with respect to MgATP. Adenylate kinase from bakers yeast was similar to mitochondrial type of animal in the contents of aianine, leucine and asparagine or asparatic acid differing from muscle type enzyme. Based on the results and observation, characteristic of yeast adenylate kinase resembled the adenylate kinase of mitochondrial type from animals. Further, difference of characteristics in adenylate kinasa depending upon the workers might be due to the difference of strain used.

  • PDF