• Title/Summary/Keyword: Phosphate stress

Search Result 199, Processing Time 0.027 seconds

Carbamoyl Phosphate Synthase Subunit CgCPS1 Is Necessary for Virulence and to Regulate Stress Tolerance in Colletotrichum gloeosporioides

  • Mushtaq, Aamar;Tariq, Muhammad;Ahmed, Maqsood;Zhou, Zongshan;Ali, Imran;Mahmood, Raja Tahir
    • The Plant Pathology Journal
    • /
    • v.37 no.3
    • /
    • pp.232-242
    • /
    • 2021
  • Glomerella leaf spot (GLS) is a severe infectious disease of apple whose infective area is growing gradually and thus poses a huge economic threat to the world. Different species of Colletotrichum including Colletotrichum gloeosporioides are responsible for GLS. For efficient GLS control, it is important to understand the mechanism by which the cruciferous crops and C. gloeosporioides interact. Arginine is among one of the several types of amino acids, which plays crucial role in biochemical and physiological functions of fungi. The arginine biosynthesis pathway involved in virulence among plant pathogenic fungi is poorly understood. In this study, CgCPS1 gene encoding carbamoyl phosphate synthase involved in arginine biosynthesis has been identified and inactivated experimentally. To assess the effects of CgCPS1, we knocked out CgCPS1 in C. gloeosporioides and evaluated its effects on virulence and stress tolerance. The results showed that deletion of CgCPS1 resulted in loss of pathogenicity. The ∆cgcps1 mutants showed slow growth rate, defects in appressorium formation and failed to develop lesions on apple leaves and fruits leading to loss of virulence while complementation strain (CgCPS1-C) fully restored its pathogenicity. Furthermore, mutant strains showed extreme sensitivity to high osmotic stress displaying that CgCPS1 plays a vital role in stress response. These findings suggest that CgCPS1 is major factor that mediates pathogenicity in C. gloeosporioides by encoding carbamoyl phosphate that is involved in arginine biosynthesis and conferring virulence in C. gloeosporioides.

Shear stress analysis of phosphorylated potato starch based electrorheological fluid

  • Hong, Cheng-Hai;Choi, Hyoung-Jin
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.221-225
    • /
    • 2007
  • Electrorheological characteristics of a dispersed system of phosphorylated potato starch particles in silicone oil investigated via a rotational rheometer equipped with a high voltage generator is being reanalysized. Flow curves of these ER fluids both under several applied electric field strengths and with different degrees of phosphate substitution were mainly examined via three different rheological constitutive equations of Bingham model, De Kee-Turcotte model and our previously proposed CCJ model. Among these, the CCJ equation was found to fit the data of phosphorylated potato starch well.

Electrical and Rheological Behavior of the Angydrous ER Fluids Based on Chitosan Derviatives as the Dispersion Phases

  • Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.5 no.2
    • /
    • pp.49-51
    • /
    • 2004
  • The electrical and rheological properties pertaining to the electrorheological (ER) behavior of chitosan derivatives, chitosan, chitosan ammonium salt and chitosan phosphated suspensions in silicone oil were investigated. Chitosan derivative suspensions showed a typical ER response (Bingham flow behavior) upon application of an electric field. However, chitosan phosphate suspension exhibited an excellent shear yield stress compared with chitosan and chitosan ammonium salt suspensions. The difference in behavior results from the difference in the conductivity of the disperse phases due to the difference of their polarizability. The shear stress for the chitosan, chitosan ammonium salt and chitosan phosphate suspensions exhibited a linear dependence on the volume fraction of particles and 1.18, 1.41 and 1.67 powers of the electric field. On athe basis of the experimental results, the newly synthesized chitosan dervative suspensions found to be an ER fluid.

Protective Role of Light in Heat-Induced Inhibition of Photosynthesis in Isolated Chloroplasts

  • Jun, Sung-Soo;Kim, Chang-Hoon;Hong, Young-Nam
    • Journal of Photoscience
    • /
    • v.5 no.4
    • /
    • pp.157-162
    • /
    • 1998
  • The effect of heat treatment in the light on the subsequent CO2 fixation was studied with isolated spinach chloroplasts to define the role of light during heat stress. The degree of inhibition in CO2 fixation after heat treatment at 35$^{\circ}C$ under full light intensity (600W/$m^2$) was same as that in the dark. However, heat treatment of isolated chloroplasts in the light manifested thylakoidal damage, which did not occur in the dark. Under weak light (10~30 W/$m^2$ ) where no thylakoidal damage occurred, the inhibition was substantially alleviated , showing protective effect of light . The inhibition caused by heat treatment in the dark or light is prevented by the addition of a few combined compounds to the medium prior to treatment. Fructose-1-6- bisphosphate(with aldolase)and ribose-5-phosphate, known to be effective combined with oxaloacetate in preventing inhibition after heat treatment in the dark were equally effective in the light even without oxaloacetate. Addition of sugar phosphate reduced the Mehler reaction, which may occur in fast rae under high light. However, the addition of bicarbnate and catalase that would remove Mehler reaction did not provide any protection, indicating that protective role of sugar phosphate is elsewhere. Furghermore, in whole plants rapid recovery from heat stress was observed in the light. The apparently lesser or equal inhibition in spite of additional thylakoidal damage under heat stres in the light and less requirement for the protection against heat treatment suggest that the inhibitory effect of heat stress is alleviated by light treatment.

  • PDF

Glucose-6-phosphate dehydrogenase deficiency does not increase the susceptibility of sperm to oxidative stress induced by H2O2

  • Roshankhah, Shiva;Rostami-Far, Zahra;Shaveisi-Zadeh, Farhad;Movafagh, Abolfazl;Bakhtiari, Mitra;Shaveisi-Zadeh, Jila
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.43 no.4
    • /
    • pp.193-198
    • /
    • 2016
  • Objective: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. G6PD plays a key role in the pentose phosphate pathway, which is a major source of nicotinamide adenine dinucleotide phosphate (NADPH). NADPH provides the reducing equivalents for oxidation-reduction reductions involved in protecting against the toxicity of reactive oxygen species such as $H_2O_2$. We hypothesized that G6PD deficiency may reduce the amount of NADPH in sperms, thereby inhibiting the detoxification of $H_2O_2$, which could potentially affect their motility and viability, resulting in an increased susceptibility to infertility. Methods: Semen samples were obtained from four males with G6PD deficiency and eight healthy males as a control. In both groups, motile sperms were isolated from the seminal fluid and incubated with 0, 10, 20, 40, 60, 80, and $120{\mu}M$ concentrations of $H_2O_2$. After 1 hour incubation at $37^{\circ}C$, sperms were evaluated for motility and viability. Results: Incubation of sperms with 10 and $20{\mu}M\;H_2O_2$ led to very little decrease in motility and viability, but motility decreased notably in both groups in 40, 60, and $80{\mu}M\;H_2O_2$, and viability decreased in both groups in 40, 60, 80, and $120{\mu}M\;H_2O_2$. However, no statistically significant differences were found between the G6PD-deficient group and controls. Conclusion: G6PD deficiency does not increase the susceptibility of sperm to oxidative stress induced by $H_2O_2$, and the reducing equivalents necessary for protection against $H_2O_2$ are most likely produced by other pathways. Therefore, G6PD deficiency cannot be considered as major risk factor for male infertility.

A Role for Arabidopsis miR399f in Salt, Drought, and ABA Signaling

  • Baek, Dongwon;Chun, Hyun Jin;Kang, Songhwa;Shin, Gilok;Park, Su Jung;Hong, Hyewon;Kim, Chanmin;Kim, Doh Hoon;Lee, Sang Yeol;Kim, Min Chul;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.111-118
    • /
    • 2016
  • MiR399f plays a crucial role in maintaining phosphate homeostasis in Arabidopsis thaliana. Under phosphate starvation conditions, AtMYB2, which plays a role in plant salt and drought stress responses, directly regulates the expression of miR399f. In this study, we found that miR399f also participates in plant responses to abscisic acid (ABA), and to abiotic stresses including salt and drought. Salt and ABA treatment induced the expression of miR399f, as confirmed by histochemical analysis of promoter-GUS fusions. Transgenic Arabidopsis plants overexpressing miR399f (miR399f-OE) exhibited enhanced tolerance to salt stress and exogenous ABA, but hypersensitivity to drought. Our in silico analysis identified ABF3 and CSP41b as putative target genes of miR399f, and expression analysis revealed that mRNA levels of ABF3 and CSP41b decreased remarkably in miR399f-OE plants under salt stress and in response to treatment with ABA. Moreover, we showed that activation of stress-responsive gene expression in response to salt stress and ABA treatment was impaired in miR399f-OE plants. Thus, these results suggested that in addition to phosphate starvation signaling, miR399f might also modulates plant responses to salt, ABA, and drought, by regulating the expression of newly discovered target genes such as ABF3 and CSP41b.

The Relation between Life Stress and Nutrient Intake Status in Female University Students (여대생의 생활 스트레스와 영양소 섭취 상태와의 관계)

  • Kim, Kyung-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.15 no.5
    • /
    • pp.387-397
    • /
    • 2000
  • A survey was carried out to investigate relation between life stress and nutrient intake status in female university students. It was represented that increasing trends of food intake under the stress condition and preference taste was sweet and hot in female students. The female students thought that food intake for coping with stress was produced negative results and they perceived the relation between stress and their health problem. There was a positive correlation between stress level and the change of food intake in female students statistically(p<0.01). They had higher stress in future prospect, academic problem, friend relationship, personality and family relationship. The average calorie intake of female university students was 1553.06kcal(77.65% of RDA). The intake of protein, calcium and iron were quite less than the RDA, whereas the intake of phosphate, vitamin A, $B_2$, C, niacin were more than the RDA. In changes of nutrient intake under the stress conditions, the higher stress group had decreased intake of calcium, iron, vitamin $B_1,\;B_2$, C than the lower stress group(p<0.05).

  • PDF

The role of peroxidases in the pathogenesis of atherosclerosis

  • Park, Jong-Gil;Oh, Goo-Taeg
    • BMB Reports
    • /
    • v.44 no.8
    • /
    • pp.497-505
    • /
    • 2011
  • Reactive oxygen species (ROS), which include superoxide anions and peroxides, induce oxidative stress, contributing to the initiation and progression of cardiovascular diseases involving atherosclerosis. The endogenous and exogenous factors hypercholesterolemia, hyperglycemia, hypertension, and shear stress induce various enzyme systems such as nicotinamide adenine dinucleotide (phosphate) oxidase, xanthine oxidase, and lipoxygenase in vascular and immune cells, which generate ROS. Besides inducing oxidative stress, ROS mediate signaling pathways involved in monocyte adhesion and infiltration, platelet activation, and smooth muscle cell migration. A number of antioxidant enzymes (e.g., superoxide dismutases, catalase, glutathione peroxidases, and peroxiredoxins) regulate ROS in vascular and immune cells. Atherosclerosis results from a local imbalance between ROS production and these antioxidant enzymes. In this review, we will discuss 1) oxidative stress and atherosclerosis, 2) ROS-dependent atherogenic signaling in endothelial cells, macrophages, and vascular smooth muscle cells, 3) roles of peroxidases in atherosclerosis, and 4) antioxidant drugs and therapeutic perspectives.