• Title/Summary/Keyword: Phosphate concentration

Search Result 1,238, Processing Time 0.027 seconds

Optimization of Submerged Culture Conditions for the Production of Ginseng Root Using Response Surface Method (반응표면분석법을 이용한 인삼 Root 액체배양조건의 최적화)

  • 오훈일;장은정;이시경;박동기
    • Journal of Ginseng Research
    • /
    • v.24 no.2
    • /
    • pp.58-63
    • /
    • 2000
  • To develop the production of ginseng root using plant tissue culture technology, submerged culture conditions were optimized by means of the fractional factorial design with 4 factors and 3 levels by a RSM computer program. The ginseng (Panax ginseng C. A. Meyer) roots induced by plant growth regulators were cultured on SH medium and the effects of various pH of medium, sucrose concentration, nitrogen concentration and phosphate concentration on fresh weight of the ginseng root were investigated. The fresh weight of ginseng root increased with a decrease in nitrogen concentration and fresh weight of ginseng root varied from 1.00 to 2.33g under various conditions. The optimum pH of medium and sucrose concentration determined by a partial differentiation of the model equation, nitrogen and phosphate concentration were pH 5.6, sucrose 3.8%, nitrogen 50 mg/L and phosphate 80.7 mg/L, respectively. Under these conditions, the predicted growth of ginseng root was estimated to be 2.36g.

  • PDF

Effects of Limestone on the Dissolution of Phosphate from Sediments under Anaerobic Condition (혐기성 퇴적물에서 석회석이 인산염용해에 미치는 영향)

  • Kim, Hag Seong;Park, Juhyun
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.81-86
    • /
    • 2007
  • This paper describes a study on the role of limestone which might affect the dissolution of phosphates when phosphate containing sediments are put under anaerobic conditions. A small quantity of calcium hydroxy-apatite, alone or mixed with limestone powder, was put in contact with aqueous solution of acetic acid or carbonic acid, and variations of phosphate concentration were determined time dependantly. The results showed that the concentration was remarkably low in the presence of limestone, signifying that the coexistence of limestone suppresses the dissolution of phosphate by organic acid and/or carbonic acid. Separate experiments conducted by developing an anaerobic condition, after mixing lake sediments with dried leaves and limestone, showed that the existence of limestone suppressed the dissolution of phosphate. These results show that the application of limestone might be a useful measure to prevent deterioration of water quality originated from eutrophication by inhibiting the internal loading of P in eutrophic water-bodies.

Fundamental Studies on the Calcium Precipitation for the Reuse of Wastewater Containing Phosphate (칼슘 침전처리에 의한 인산폐수 재사용에 관한 연구)

  • Kim Yaung-Im;Kim Dong-Su
    • Resources Recycling
    • /
    • v.12 no.4
    • /
    • pp.38-43
    • /
    • 2003
  • Phosphate is an essential material for the growth of organisms. However. since relatively small amount is required. a large amount of phosphate is abandoned in wastes and wastewater. which contaminate the ecological environment including aquatic system. Purpose of this study is to treat especially high concentrated phosphate wastewater by use of calcium precipitation method. The pH range considered was from 6 to 12 and the maximum removal of phosphate was attained at pH 12. The con-centration of phosphate was observed to decrease rapidly until a half amount of calcium ion to its equivalent for the formation of calcium phosphate precipitate was added. which resulted in the decrease of the remaining concentration of phosphate down to 0.0027 mM. The effect of fluoride ion was examined and the concentration ratio between the phosphate and fluoride ion did not have any significant influence on the removal efficiency of phosphate. The effect of pH was also investigated. With the increasing of the pH in solution, the removal rate of phosphate was increased. Also it was investigated that the effect of fluoride on the phosphate removal was not significant.

Effects of Insulin and IGFs on Phosphate Uptake in Primary Cultured Rabbit Renal Proximal Tubule Cells

  • Han, Ho-Jae;Park, Kwon-Moo
    • The Korean Journal of Physiology
    • /
    • v.30 no.1
    • /
    • pp.63-76
    • /
    • 1996
  • The aim of present study was to characterize phosphate uptake and to investigate the mechanism for the insulin and insulin-like growth factor(IGF) stimulation of phosphate uptake in primary cultured rabbit renal proximal tubule cells. Results were as follows : 1. The primary cultured proximal tubule cells had accumulated $6.68{\pm}0.70$ nmole phosphate/mg protein in the presence of 140 mM NaCl and $2.07{\pm}0.17$ nmole phosphate/mg protein in the presence of 140 mM KCl during a 60 minute uptake period. Raising the concentration of extracellular phosphate to 100 mM$(48.33{\pm}1.76\;pmole/mg\;protein/min)$ induced decrease in phosphate uptake compared with that in control cells maintained in 1 mM phosphate$(190.66{\pm}13.01\;pmole/mg\;protein/min)$. Optimal phosphate uptake was observed at pH 6.5 in the presence of 140 mM NaCl. Phosphate uptake at pH 7.2 and pH 7.9 decreased to $83.06{\pm}5.75%\;and\;74.61{\pm}3.29%$ of that of pH 6.5, respectively. 2. Phosphate uptake was inhibited by iodoacetic acid(IAA) or valinomycin treatment $(62.41{\pm}4.40%\;and\;12.80{\pm}1.64%\;of\;that\;of\;control,\;respectively)$. When IAA and valinomycin were added together, phosphate uptake was inhibited to $8.04{\pm}0.61%$ of that of control. Phosphate uptake by the primary proximal tubule cells was significantly reduced by ouabain treatment$(80.27{\pm}6.96%\;of\;that\;of\;control)$. Inhibition of protein and/or RNA synthesis by either cycloheximide or actinomycin D markedly attenuated phosphate uptake. 3. Extracellular CAMP and phorbol 12-myristate 13 acetate(PMA) decreased phosphate uptake in a dose-dependent manner in all experimental conditions. Treatment of cells with pertussis toxin or cholera toxin inhibited phosphate uptake. cAMP concentration between $10^{-6}\;M\;and\;10^{-4}\;M$ significantly inhibited phosphate uptake. Phosphate uptake was blocked to about 25% of that of control at 100 ng/ml PMA. 3-Isobutyl-1-methyl-xanthine(IBMX) inhibited phosphate uptake. However, in the presence of IBMX, the inhibitory effect of exogenous cAMP was not significantly potentiated. Forskolin decreased phosphate transport. Acetylsalicylic acid did not inhibit phosphate uptake. The 1,2-dioctanoyl-sn-glycorol(DAG) and 1-oleoyl-2-acetyl-sn- glycerol(OAG) showed a inhibitory effect. However, staurosporine had no effect on phosphate uptake. When PMA and staurosporine were treated together, inhibition of phosphate uptake was not observed. In conclusion, phosphate uptake is stimulated by high sodium and low phosphate and pH 6.5 in the culture medium. Membrane potential and intracellular energy levels are also an important factor fer phosphate transport. Insulin and IGF-I stimulate phosphate uptake through a mechanisms that involve do novo protein and/or RNA synthesis and decrease of intracellular cAMP level. Also protein kinase C(PKC) is may play a regulatory role in transducing the insulin and IGF-I signal for phosphate transport in primary cultured proximal tubule cells.

  • PDF

Attachment of Bacillus subtilis to Al-Fe Bimetallic Oxide-coated Sand : Effect of Oxyanions (알루미늄.철 산화물 동시피복모래에서 Bacillus subtilis의 부착: 산화음이온의 영향)

  • Park, Seong-Jik;Lee, Chang-Gu;Han, Yong-Un;Park, Jeong-Ann;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.515-520
    • /
    • 2009
  • This study investigated the influence of oxyanions (nitrate, carbonate, phosphate) on the attachment of bacteria (Bacillus subtilis) to Al-Fe bimetallic oxide-coated sand using column experiments. Results showed that bacterial attachment to the coated sand was independent of nitrate concentration. Bacterial mass recovery remained constant (10.9${\pm}$0.2%) with varying nitrate concentrations (0.1, 1, 10 mM). In case of carbonate, mass recovery increased from 25.6% to 39.0% with increasing carbonate concentration from 0.1 mM to 1 mM, and mass recovery also increased from 50.9% to 78.9% at the same concentration condition in case of phosphate. This phenomenon could be attributed to the hindrance effect of carbonate and phosphate to bacterial attachment to the coated sand. Meanwhile, with increasing carbonate/phosphate concentration from 1 mM to 10 mM, mass recovery decreased from 39.0% to 23.8% and from 78.9% to 52.6%, respectively. This phenomenon could be ascribed to the enhancement effect of free carbonate/phosphate ions present in solution phase due to increasing carbonate/phosphate concentration, which increase ionic strength and thus enhance bacterial attachment to the coated sand. In our experimental conditions, the effect of phosphate to bacterial attachment to the coated sand was the greatest among phosphate, carbonate, and nitrate.

Synthesis of Ultra-fine Calcium Phosphate Powders from Ca(OH)2 Suspension and Various Phosphoric Aqueous Solutions (Ca(OH)$_2$ 현탁액과 각종 인산 수용액으로부터 인산칼슘 초미분말의 제조)

  • 민경소;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.1
    • /
    • pp.74-82
    • /
    • 1992
  • Ultra-fine calcium phosphate powders were synthesized by the reaction of Ca(OH)2 suspension with various phosphoric aqueous solutions such as (NH4)2HPO4, H4P2O7 and H3PO4, and the characterization of powders was examined for each synthetic condition. When (NH4)2HPO4 and H3PO4 were used, hydroxyapatite powders with poor crystallinity were obtained. In the case of H4P2O7, amorphous calcium phosphate was obtained up to 0.3 mol/ι Ca(OH)2 suspension, but above the concentration, poor crystalline hydroxyapatite was produced. Crystalline phases of powders heat-treated at 80$0^{\circ}C$ were hydroxyapatite, $\beta$-tricalcium phosphate and $\beta$-tricalcium phosphate for the case of (NH4)2HPO4, H4P2O7 and H3PO4, respectively. SEM observation revealed that the shapes of synthesized powders were vigorously agglomerated spherical with the size below 100 nm, but TEM observation revealed that primary shapes of particles were rod for (NH4)2HPO4 and H3PO4 and were sphere for H4P2O7. There was no dependence of the concentration of Ca(OH)2 suspension. In the case that reaction temperature and pH of the suspension were raised, the inclination to the hydroxyapatite were remarkable. The amorphous calcium phosphate synthesized in this experiment contained water about 20% , and was crystallized to $\beta$-tricalcium phosphate at 69$0^{\circ}C$.

  • PDF

Adsorptive Removal of Phosphate Ions from Aqueous Solutions using Zirconium Fumarate

  • Rallapalli, Phani B.S.;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.495-501
    • /
    • 2020
  • In this study, zirconium fumarate of metal-organic framework (MOF-801) was solvothermally synthesized at 130 ℃ and characterized through powder X-ray diffraction (PXRD) analyses and porosity measurements from N2 sorption isotherms at 77 K. The ability of MOF-801 to act as an adsorbent for the phosphate removal from aqueous solutions at 25 ℃ was investigated. The phosphate removal efficiency (PRE) obtained by 0.05 g/L adsorbent dose at an initial phosphate concentration of 60 ppm after 3 h was 72.47%, whereas at 5 and 20 ppm, the PRE was determined to be 100% and 89.88%, respectively, after 30 min for the same adsorbent dose. Brunauer-Emmett-Teller (BET) surface area and pore volume of the bare MOF-801 sample were 478.25 ㎡/g and 0.52 ㎤/g, respectively, whereas after phosphate adsorption (at an initial concentration of 60 ppm, 3 h), the BET surface area and pore volume were reduced to 331.66 ㎡/g and 0.39 ㎤/g, respectively. The experimental data of kinetic (measured at initial concentrations of 5, 20 and 60 ppm) and isotherm measurements followed the pseudo-second-order kinetic equation and the Freundlich isotherm model, respectively. This study demonstrates that MOF-801 is a promising material for the removal of phosphate from aqueous solutions.

EFFICACY EVALUATION OF THE WHITENING COSMETICS USING IN VITRO TYROSINASE INHIBITION ASSAY

  • Lee, J. P.;Kim, Y. O.;J. Y. Jang;K. H. Son;S. J. Yang;Lee, K. S.;Kim, W. H.;J. T. Hong;Park, S. S.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.479-479
    • /
    • 2003
  • We investigated the tyrosinase inhibitory effect using whitening materials such as arbutin, ethyl ascorbyl ether, glabridin, kojic acid, magnesium ascorbyl phosphate and ascorbic acid. Tyrosinase inhibition rate were determined varying the enzyme concentration, reaction time, reaction temperature and pH. The optimal conditions to measure the inhibitory efficacy were as follows. : enzyme concentration 1,500 or 2,000IU/mL, reaction time 15min(for the enzyme concentration 1,500 IU/mL) and l0min(for the enzyme concentration 2,000IU/mL), reation temperature 42$^{\circ}C$, pH 6.5. Under these conditions $IC_{50}$/ of arbutin, ethyl ascorbyl ether, glabridin, kojic acid, magnesium ascorbyl phosphate and ascorbic acid were calculated. In the case of magnesium ascorbyl phosphate, the inhibitory effect of tyrosinase was very low and the $IC_{50}$/ of magnesium ascorbyl phosphate could not be calculated. Other five materials showed good inhibitory effect of tyrosinase and can be used for the whitening materials.

  • PDF

Effects of Increased NADPH Concentration by Metabolic Engineering of the Pentose Phosphate Pathway on Antibiotic Production and Sporulation in Streptomyces lividans TK24

  • Jin, Xue-Mei;Chang, Yong-Keun;Lee, Jae Hag;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1867-1876
    • /
    • 2017
  • Most of the biosynthetic pathways for secondary metabolites are influenced by carbon metabolism and supply of cytosolic NADPH. We engineered carbon distribution to the pentose phosphate pathway (PPP) and redesigned the host to produce high levels of NADPH and primary intermediates from the PPP. The main enzymes producing NADPH in the PPP, glucose 6-phosphate dehydrogenase (encoded by zwf1 and zwf2) and 6-phosphogluconate dehydrogenase (encoded by zwf3), were overexpressed with opc encoding a positive allosteric effector essential for Zwf activity in various combinations in Streptomyces lividans TK24. Most S. lividans transformants showed better cell growth and higher concentration of cytosolic NADPH than those of the control, and S. lividans TK24/pWHM3-Z23O2 containing zwf2+zwf3+opc2 showed the highest NADPH concentration but poor sporulation in R2YE medium. S. lividans TK24/pWHM3-Z23O2 in minimal medium showed the maximum growth (6.2 mg/ml) at day 4. Thereafter, a gradual decrease of biomass and a sharp increase of cytosolic NADPH and sedoheptulose 7-phosphate between days 2 and 4 and between days 1 and 3, respectively, were observed. Moreover, S. lividans TK24/pWHM3-Z23O2 produced 0.9 times less actinorhodin but 1.8 times more undecylprodigiosin than the control. These results suggested that the increased NADPH concentration and various intermediates from the PPP specifically triggered undecylprodigiosin biosynthesis that required many precursors and NADPH-dependent reduction reaction. This study is the first report on bespoke metabolic engineering of PPP routes especially suitable for producing secondary metabolites that need diverse primary precursors and NADPH, which is useful information for metabolic engineering in Streptomyces.

Phosphate removal by the continuous flow pilot plant with converter slag (연속흐름 모형실험장치를 이용한 전로슬래그에 의한 인산염 제거)

  • Lee, Sang Ho;Hwang, Jeong Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.453-459
    • /
    • 2014
  • The excessive concentration of phosphorus in the river and reservoir is a deteriorating factor for the eutrophication. The converter slag was used to remove the phosphate from the synthetic wastewater. Influencing factors were studied to remove soluble orthophosphate with the different particle sizes through the batch and the column experiments by continuous flow. Freundlich and Langmuir adsorption isotherm constants were obtained from batch experiments with $PS_A$ and $PS_B$. Freundlich isotherm was fitted better than Langmuir isotherm. Regression coefficient of Freundlich isotherm was 0.95 for $PS_A$ and 0.92 for $PS_B$, respectively. The adsorption kinetics from the batch experiment were revealed that bigger size of convert slag, $PS_A$ can be applied for the higher than 3.5 mg/L of phosphate concentration. The pilot plant of continuous flow was applied in order to evaluate the pH variation, breakthrough points and breakthrough adsorption capacity of phosphate. The variation of pH was decreased through the experimental hours. The breakthrough time was 1,432 and 312 hours to 10 mg/L and 50 mg/L for the influent concentration, respectively. The breakthrough adsorption capacity was 3.54 g/kg for 10 mg/L, and 1.72 g/kg for 50 mg/L as influent phosphate concentration.