Attachment of Bacillus subtilis to Al-Fe Bimetallic Oxide-coated Sand : Effect of Oxyanions

알루미늄.철 산화물 동시피복모래에서 Bacillus subtilis의 부착: 산화음이온의 영향

  • Park, Seong-Jik (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Lee, Chang-Gu (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Han, Yong-Un (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Park, Jeong-Ann (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Kim, Song-Bae (Department of Rural Systems Engineering.Research Institute for Agriculture and Life Sciences, Seoul National University)
  • 박성직 (서울대학교 환경바이오콜로이드공학 연구실) ;
  • 이창구 (서울대학교 환경바이오콜로이드공학 연구실) ;
  • 한용운 (서울대학교 환경바이오콜로이드공학 연구실) ;
  • 박정안 (서울대학교 환경바이오콜로이드공학 연구실) ;
  • 김성배 (서울대학교 지역시스템공학과, 농업생명과학연구원)
  • Received : 2009.06.09
  • Accepted : 2009.07.06
  • Published : 2009.07.31

Abstract

This study investigated the influence of oxyanions (nitrate, carbonate, phosphate) on the attachment of bacteria (Bacillus subtilis) to Al-Fe bimetallic oxide-coated sand using column experiments. Results showed that bacterial attachment to the coated sand was independent of nitrate concentration. Bacterial mass recovery remained constant (10.9${\pm}$0.2%) with varying nitrate concentrations (0.1, 1, 10 mM). In case of carbonate, mass recovery increased from 25.6% to 39.0% with increasing carbonate concentration from 0.1 mM to 1 mM, and mass recovery also increased from 50.9% to 78.9% at the same concentration condition in case of phosphate. This phenomenon could be attributed to the hindrance effect of carbonate and phosphate to bacterial attachment to the coated sand. Meanwhile, with increasing carbonate/phosphate concentration from 1 mM to 10 mM, mass recovery decreased from 39.0% to 23.8% and from 78.9% to 52.6%, respectively. This phenomenon could be ascribed to the enhancement effect of free carbonate/phosphate ions present in solution phase due to increasing carbonate/phosphate concentration, which increase ionic strength and thus enhance bacterial attachment to the coated sand. In our experimental conditions, the effect of phosphate to bacterial attachment to the coated sand was the greatest among phosphate, carbonate, and nitrate.

본 연구에서는 칼럼실험을 이용하여 알루미늄 철 산화물 동시피복모래에서 박테리아(Bacillus subtilis)의 부착에 산화음 이온(질산염, 탄산염, 인산염)이 미치는 영향을 조사하였다. 실험결과, 질산염의 경우 피복모래에서의 박테리아 부착은 질산염 이온의 농도변화와 무관하였다. 질산염의 농도가 변화함에 따라(0.1, 1, 10 mM) 질량회수율은 10.9${\pm}$0.2 %로 일정하였다. 탄산염의 경우 농도가 0.1 mM에서 1 mM로 증가함에 따라 질량회수율이 25.6%에서 39.0%로 증가하였고, 인산염의 경우에도 동일한 농도조건에서 50.9%에서 78.9%로 증가하였다. 이러한 현상은 박테리아 부착에 대한 탄산염과 인산염 이온의 방해효과 때문이었다. 반면, 탄산염/인산염의 농도가 1 mM에서 10 mM로 증가함에 따라 질량회수율이 각각 39.0%에서 23.8%로 78.9%에서 52.6%로 감소하였다. 이러한 현상은 탄산염/인산염의 농도증가에 따라 피복모래표면에 흡착되지 않고 수용액상에 존재하는 탄산염이나 인산염 이온이 이온강도를 증가시킴으로써 일어나는 박테리아 부착에 대한 증진효과 때문이었다. 본 실험조건에서 피복모래에서의 박테리아 부착에 미치는 영향은 인산염, 탄산염, 그리고 질산염 중, 인산염이 가장 큰 것으로 나타났다.

Keywords

References

  1. Knapp, E. P., Herman, J. S., Hornberger, G. M. and Mills, A. L., “The effect of distribution of iron-oxyhydroxide grain coatings on the transport of bacterial cells in porous media,”Environ. Geol., 33, 243-248(1998) https://doi.org/10.1007/s002540050243
  2. Bolster, C. H., Mills, A. L., Hornberger, G. M. and Herman, J. S.,“ Effect of surface coatings, grain size, and ionic strength on the maximum attainable coverage of bacteria on sand surfaces,” J. Contam. Hydrol., 50, 287-305(2001) https://doi.org/10.1016/S0169-7722(01)00106-1
  3. Silliman, S. E., Dunlap, R., Fletcher, M. and Schneegurt M. A., “Bacterial transport in heterogeneous porous media:observations from laboratory experiments,”Water Res., 37, 2699-2707 (2001) https://doi.org/10.1029/2001WR000331
  4. Hall, J. A., Mailloux, B. J., Onstott, T. C., Scheibe, T. D., Fuller, M. E., Dong, H. and Deflaun M. F., “Physical versus chemical effects on bacterial and bromide transport as determined from on site sediment column pulse experiments,”J. Contam. Hydrol., 57, 161-187(2005) https://doi.org/10.1016/S0169-7722(02)00007-4
  5. Lukasik, J., Cheng, Y.-F., Lu, F., Tamplin, M. and Farrah, S. R., “Removal of microorganisms from water by columns containing sand coated with ferric and aluminum hydroxides,”Water Res., 33, 769-777(1999) https://doi.org/10.1016/S0043-1354(98)00279-6
  6. Kim, S. B., Park, S. J., Lee, C. G., Choi, N. C. and Kim, D. J., “Bacteria transport through goethite-coated sand: effects of solution pH and coated sand content,”Colloids Surf. B., 63, 236-242(2008) https://doi.org/10.1016/j.colsurfb.2007.12.003
  7. Gannon, J. T., Manilal, V. B. and Alexander, M., “Relationship between cell surface properties and transport of bacteria through soil,”Appl. Environ. Microbiol., 57, 190-193(1991)
  8. Fontes, D. E., Mills, A. L., Hornberger, G. M. and Herman, J. S., “Physical and chemical factors influencing transport of microorganisms through porous media,”Appl. Environ. Microbiol., 57, 2473-2481(1991)
  9. Foppen, J. W. A., Lien, Y. and Schijven, J. F.,“ Effect of humic acid on the attachment of Escherichia coli in columns of goethite-coated sand,”Water Res., 42, 211-219(2008) https://doi.org/10.1016/j.watres.2007.06.064
  10. Park, S. J., Lee, C. G. and Kim, S. B.,“ The role of phosphate in bacterial interaction with iron-coated surfaces,”Colloids Surf. B, 68, 79-82(2009) https://doi.org/10.1016/j.colsurfb.2008.09.015
  11. You, Y., Vance, G. F., Sparks, D. L., Zhuang J. and Jin, Y., “Sorption of MS2 bacteriophage to layered double hydroxides: effects of reaction time, pH, and competing anions,”J. Environ. Qual., 32, 2046-2053(2003) https://doi.org/10.2134/jeq2003.2046
  12. Zhuang, J. and Jin, Y., “Virus retention and transport through Al-oxide coated sand columns: effects of ionic strength and composition,”J. Contam. Hydrol., 60, 193-209(2003) https://doi.org/10.1016/S0169-7722(02)00087-6
  13. Zhuang, J. and Jin, Y., “Interactions between viruses and goethite during saturated flow: effects of solution pH, carbonate, and phosphate,”J. Contam. Hydrol., 98, 15-21(2008) https://doi.org/10.1016/j.jconhyd.2008.02.002
  14. Hornberger, G. M., Mills, A. L. and Herman, J. S., “Bacterial transport in porous media: evaluation of a model using laboratory observations, Water Resour. Res., 28, 915-938(1992) https://doi.org/10.1029/91WR02980
  15. Toride, N., Leij, F. J. and van Genuchten, M. Th.,“ The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments,”Research Report No. 137, US Salinity Laboratory
  16. Hiemstra, T., Rahnemaie, R. and van Riemsdijk, W. H.,“ Surface complexation of carbonate on goethite: IR spectroscopy, structure and charge distribution,”J. Colloid Interface Sci., 278, 282-290(2004) https://doi.org/10.1016/j.jcis.2004.06.014
  17. Kuan, W. H., Lo, S. L., Wang, M. K. and Lin, C. F.,“ Removal of Se(IV) and Se(VI) from water by aluminum-oxide-coated sand,”Water Res., 32, 915-923(1998) https://doi.org/10.1016/S0043-1354(97)00228-5
  18. Radu, T., Subacz, J. L., Phillippi, J. M. and Barnett, M. O., “Effects of Dissolved Carbonate on Arsenic Adsorption and Mobility,”Environ. Sci. Technol., 39, 7875-7882(2005) https://doi.org/10.1021/es050481s
  19. Poortinga, A. T., Bos, R., Norde, W. and Busscher, H. J., “Electric double layer interactions in bacterial adhesion to surfaces,”Surf. Sci. Report., 47, 1-32(2002) https://doi.org/10.1016/S0167-5729(02)00032-8
  20. Rahnemaie, R., Hiemstra, T. and van Riemsdijk, W. H., “Carbonate adsorption on goethite in competition with phosphate,”J. Colloid Interface Sci., 315, 415-425(2007) https://doi.org/10.1016/j.jcis.2007.07.017
  21. Lee, C. G., Park, S. J., Kim, H. C., Han, Y. U. and Kim, S. B., “Determination of bacterial mass recovery in iron-coated sand: influence of ionic strength,”J. Environ. Sci. Health, 43, 1108-1114(2008) https://doi.org/10.1080/10934520802060209