• Title/Summary/Keyword: Phosphate accumulation

Search Result 200, Processing Time 0.028 seconds

Downregulation of Hepatic De Novo Lipogenesis and Adipogenesis in Adipocytes by Pinus densiflora Bark Extract

  • Ahn, Hyemyoung;Jeong, Jeongho;Moyo, Knowledge Mudhibadi;Ryu, Yungsun;Min, Bokkee;Yun, Seong Ho;Kim, Hwa Yeon;Kim, Wooki;Go, Gwang-woong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1925-1931
    • /
    • 2017
  • Korean red pine (Pinus densiflora) bark extract, PineXol (PX), was investigated for its potential antioxidant and anti-inflammation effects in vitro. It was hypothesized that PX treatment ($25-150{\mu}g/ml$) would reduce the lipid synthesis in HepG2 hepatocytes as well as lipid accumulation in 3T3-L1 adipocytes. Hepatocytes' intracellular triglycerides and cholesterol were decreased in the PX $150{\mu}g/ml$ treatment group compared with the control (p < 0.05). Consequently, de novo lipogenic proteins (acetyl-CoA carboxylase 1, stearoyl-CoA desaturase 1, elongase of very long chain fatty acids 6, glycerol-3-phosphate acyltransferase 1, and sterol regulatory element-binding protein 1) were significantly decreased in hepatocytes by PX $150{\mu}g/ml$ treatment compared with the control (p < 0.05). In differentiated 3T3-L1 adipocytes, the lipid accumulation was significantly attenuated by all PX treatments (p < 0.01). Regulators of adipogenesis, including CCAAT-enhancer-binding proteins alpha, peroxisome proliferatoractivated receptor gamma, and perilipin, were decreased in PX $100{\mu}g/ml$ treatment compared with the control (p < 0.05). In conclusion, PX might have anti-obesity effects by blocking hepatic lipogenesis and by inhibiting adipogenesis in adipocytes.

Sphingolipid Metabolic Changes during Chiral C2-Ceramides Induced Apoptosis in Human Leukemia Cells

  • Baek, Mi-Young;Yoo, Hwan-Soo;Kazuyasu Nakaya;Moon, Dong-Cheul;Lee, Yong-Moon
    • Archives of Pharmacal Research
    • /
    • v.24 no.2
    • /
    • pp.144-149
    • /
    • 2001
  • N-acetylsphingosine (C2-ceramide) is a synthetic water-soluble ceramide mimicking the activity of natural ceramides. By fixing chiral conformation on carbon numbers 2 and 3 in the ceramide structure, four chiral C2-ceramides naming d-erythro-, I-erythro-, d-threo-and 1-three C2-ceramide were synthesized. We have investigated the chiral effects of these C2-ceramides on the sphingolipid metabolism, particularly on both the sphingolipid bio- synthetic pathway and on the degradation pathway. In both HL-60 and U937 cells, the chiral C2-ceramide ($10{\mu}\textrm{m}$) showed sphingosine accumulation monitored fluoromatrically by a high performance liquid chromatographic separation of the sphingoid bases. Most importantly, in HL-60 cells, l-erythro C2-ceramide induced a 50 fold increase in sphingosine as compared to the control, while l-threo C2-ceramide exhibited a minimal 7-fold in-crease. In contrast, sphinganine, another sphingoid base, showed less accumulation by any chiral C2-ceramide tested under the same conditions. These results suggested that chiral C2-ceramide primarilyacts on the sphingolipid degradation pathway rather than on the sphingolipid biosynthetic route. The strong $C_0/G_1$ phase arrest in the cell cycle by treatment of I-erythro C2-ceramide indicates that the blockade of the sphingolipid degradation pathway might be concomitantly involved in the dysfunction of the cell cycle. On the other hand, the fact that all chiral C2-ceramides tested failed to inhibit the activity of sphingosine kinase acting on the removal of sphingosine by producing sphingosine-1 -phosphate demonstrates that chiral C2- ceramides may increase sphingosine by activating various ceramidases by which natural ceramides are divided into sphingosine and free fatty acids. However, the precise steps involved in this interaction are still unknown.

  • PDF

Electrochemical Investigation of Tryptophan at a Poly(p-aminobenzene sulfonic acid) Film Modified Glassy Carbon Electrode

  • Ya, Yu;Luo, Dengbai;Zhan, Guoqin;Li, Chunya
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.928-932
    • /
    • 2008
  • A glassy carbon electrode (GCE) modified with poly(p-aminobenzene sulfonic acid) [Poly(p-ABSA)] film is fabricated by voltammetric technique in phosphate buffer solution (pH 8.0) containing $5.0\;{\times}\;10^{-3}\;mol\;L^{-1}$p- ABSA. Electrochemical behaviors of tryptophan at the Poly(p-ABSA) film electrode are investigated with voltammetry. The results indicate that the electrochemical response of tryptophan is improved significantly in the presence of poly(p-ABSA) film. Compared with the bare glassy carbon electrode, the Poly(p-ABSA) film electrode remarkably enhances the irreversible oxidation peak current of tryptophan. Some parameters such as voltammetric sweeping segments for the electrochemical polymerization, pH, accumulation potential and accumulation time are optimized. Under the optimal conditions, the oxidation peak current is proportional to tryptophan concentration in the range of $1.0\;{\times}\;10^{-7}$ to $1.0\;{\times}\;10^{-6}\;mol\;L^{-1}$, and $2.0\;{\times}\;10^{-6}$ to $1.0\;{\times}\;10^{-5}\;mol\;L^{-1}$ with a detection limit of $7.0\;{\times}\;10^{-8}\;mol\;L^{-1}$. The proposed procedure is successfully applied to the determination of tryptophan in a commercial amino acid oral solution.

Effect of Green Manure Crops Incorporation for Reduction of Pythium zingiberum in Ginger Continuous Cultivation (생강연작재배지에서 Pythium zingiberum 경감을 위한 녹비작물 재배효과)

  • Jung, Yu Jin;Nou, III Sup;Kim, Yong Kwon;Kang, Kwon Kyoo
    • Korean Journal of Plant Resources
    • /
    • v.28 no.2
    • /
    • pp.271-278
    • /
    • 2015
  • This experiment was carried out to evaluate the effects of green manure crops on the changes of chemical properties and microorganisms in soil of continuous ginger cultivation. The biomass and nitrogen absorption of green manure crop were the highest in crimson clover. After cropping, soil phosphate content was the lowest in orchard grass, however, T-N content was the highest of hairy vetch > crimson clover > orchard grass. Also real-time PCR analysis was conducted to measure density of Pythium zingiberum in soil of before and after incorporation of green manure crop. Density of P. zingiberum was the lowest of all the green manures. In this results are summarized that green manure cropping reduced salt accumulation and density of P. zingiberum in continuous ginger cultivation.

Phytoextraction of Heavy Metals Induced by Bioaugmentation of a Phosphate Solubilizing Bacterium

  • Arunakumara, K.K.I.U.;Walpola, Buddhi Charana;Song, Jun-Seob;Shin, Min-Jung;Lee, Chan-Jung;Yoon, Min-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.3
    • /
    • pp.220-230
    • /
    • 2014
  • BACKGROUND: Excessive metals in the soil have become one of the most significant environmental problems. Phytoremediation has received considerable attention as a method for restoring the contaminated soils. The microbes having remarkable metal tolerance and plant growth-promoting abilities could also play a significant role in remediation of metal-contaminated soils, because bioaugmentation with such microbes could promote phytoextraction of metals. Therefore, the present study was focused on evaluating the phytoextraction of heavy metals (Co, Pb and Zn) in Helianthus annuus (sunflower) induced by bioaugmentation of a phosphate solubilizing bacterium. METHODS AND RESULTS: A phosphate solubilizing bacterium was isolated from metal-contaminated soils based on the greater halo size (>3 mm) with solid NBRIP agar medium containing 10 g glucose, 5 g $Ca_3(PO_4)_2$, 5 g $MgCl_2{\cdot}6H_2O$, 0.25 g $MgSO_4.7H_2O$, 0.2 g KCl, 0.1 g $(NH_4)_2SO_4$ in 1 L distilled water. Isolated bacterial strain was assessed for their resistance to heavy metals; $CoCl_2.6H_2O$, $2PbCO_3.Pb(OH)_2$, and $ZnCl_2$ at various concentrations ranging from $100-400{\mu}g/mL$ (Co, Pb and Zn) using the agar dilution method. A pot experiment was conducted with aqueous solutions of different heavy metals (Co, Pb and Zn) to assess the effect of bacterial strain on growth and metal uptake by Helianthus annuus (sunflower). The impact of bacterial inoculation on the mobility of metals in soil was investigated under laboratory conditions with 50 mL scaled polypropylene centrifuge tubes. The metal contents in the filtrate of plant extracts were determined using an atomic absorption spectrophotometer (Perkinelmer, Aanalyst 800, USA). CONCLUSION: Inoculation with Enterobacter ludwigii PSB 28 resulted in increased shoot and root biomass and enhanced accumulation of Co, Pb and Zn in Helianthus annuus plants. The strain was found to be capable of promoting metal translocation from the roots to the shoots of H. annuus. Therefore, Enterobacter ludwigii PSB 28 could be identified as an effective promoter of phytoextraction of Co, Pb and Zn from metal-contaminated soils.

Systemic Acquired Resistance in Plants (전신획득저항성에 의한 식물병 방어기작)

  • Dawon, Jeon;Taekyung, Kim;Gah-Hyun, Lim
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.908-917
    • /
    • 2022
  • Systemic acquired resistance (SAR) is a form of systemic immunity that prevents secondary infections of distal uninfected parts of plants by related or unrelated pathogens. SAR is mediated by several SAR-inducing chemicals or mobile signals that accumulate after pathogen infection. Several chemicals that move systemically have already been identified as SAR-inducing factors, despite the fact that the early mobile signal remains unclear. These chemicals can be transported into either the apoplastic or symplastic compartments. Many of the chemicals associated with SAR remain unknown in terms of their transport routes. There is recent evidence that azelaic acid (AzA) and glycerol-3-phosphate (G3P) are transported via plasmodesmata (PD) channels, which regulate the symplastic route. In contrast, salicylic acid (SA) is preferentially transported from pathogen-infected to uninfected parts via the apoplast. The pH gradient and SA deprotonation lead to apoplastic accumulation of SA before it accumulates in the cytosol. Moreover, there is evidence that the mobility of SA over a long distance is crucial for SAR and that the partitioning of SA into the symplast and cuticles is controlled by transpiration. Further research has shown that a portion of the total SA in leaves is partitioned into cuticular waxes. The purpose of this review is to discuss the role of SAR-inducing chemicals and the regulation of transport in SAR.

Mobility of Nitrate and Phosphate through Small Lysimeter with Three Physico-chemically Different Soils (소형 라이시메터시험을 통한 토양특성에 따른 질산과 인산의 이동성 비교)

  • Han, Kyung-Hwa;Ro, Hee-Myong;Cho, Hyun-Jun;Kim, Lee-Yul;Hwang, Seon-Woong;Cho, Hee-Rae;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.260-266
    • /
    • 2008
  • Small lysimeter experiment under rain shelter plastic film house was conducted to investigate the effect of soil characteristics on the leaching and soil solution concentration of nitrate and phosphate. Three soils were obtained from different agricultural sites of Korea: Soil A (mesic family of Typic Dystrudepts), Soil B (mixed, mesic family of Typic Udifluvents), and Soil C (artificially disturbed soils under greenhouse). Organic-C contents were in the order of Soil C ($32.4g\;kg^{-1}$) > Soil B ($15.0g\;kg^{-1}$) > Soil A ($8.1g\;kg^{-1}$). Inorganic-N concentration also differed significantly among soils, decreasing in the order of Soil B > Soil C > Soil A. Degree of P saturation (DPS) of Soil C was 178%, about three and fifteen times of Soil B (38%) and Soil A (6%). Prior to treatment, soils in lysimeters (dia. 300 mm, soil length 450 mm) were tabilized by repeated drying and wetting procedures for two weeks. After urea at $150kg\;N\;ha^{-1}$ and $KH_2PO_4$ at $100kg\;P_2O_5\;ha^{-1}$ were applied on the surface of each soil, total volume of irrigation was 213 mm at seven occasions for 65 days. At 13, 25, 35, 37, and 65 days after treatment, soil solution was sampled using rhizosampler at 10, 20, and 30 cm depth and leachate was sampled by free drain out of lysimeter. The volume of leachate was the highest in Soil C, and followed by the order of Soils A and B, whereas the amount of leached nitrate had a reverse trend, i.e. Soil B > Soil A > Soil C. Soil A and B had a significant increase of the nitrate concentration of soil solution at depth of 10 cm after urea-N treatment, but Soil C did not. High nitrate mobility of Soil B, compared to other soils, is presumably due to relatively high clay content, which could induce high extraction of nitrate of soil matrix by anion exclusion effect and slow rate of water flow. Contrary to Soil B, high organic matter content of Soil C could be responsible for its low mobility of nitrate, inducing preferential flow by water-repellency and rapid immobilization of nitrate by a microbial community. Leached phosphate was detected in Soil C only, and continuously increased with increasing amount of leachate. The phosphate concentration of soil solution in Soil B was much lower than in Soil C, and Soil A was below detection limit ($0.01mg\;L^{-1}$), overall similar to the order of degree of P saturation of soils. Phosphate mobility, therefore, could be largely influenced by degree of P saturation of soils but connect with apparent leaching loss only more than any threshold of P accumulation.

High maysin corn silk extract reduces body weight and fat deposition in C57BL/6J mice fed high-fat diets

  • Lee, Eun Young;Kim, Sun Lim;Kang, Hyeon Jung;Kim, Myung Hwan;Ha, Ae Wha;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • v.10 no.6
    • /
    • pp.575-582
    • /
    • 2016
  • BACKGROUNG/OBJECTIVES: The study was performed to investigate the effects and mechanisms of action of high maysin corn silk extract on body weight and fat deposition in experimental animals. MATERIALS/METHODS: A total of 30 male C57BL/6J mice, 4-weeks-old, were purchased and divided into three groups by weight using a randomized block design. The normal-fat (NF) group received 7% fat (diet weight basis), the high-fat (HF) group received 25% fat and 0.5% cholesterol, and the high-fat corn silk (HFCS) group received high-fat diet and high maysin corn silk extract at 100 mg/kg body weight through daily oral administration. Body weight and body fat were measured, and mRNA expression levels of proteins involved in adipocyte differentiation, fat accumulation, fat synthesis, lipolysis, and fat oxidation in adipose tissue and the liver were measured. RESULTS: After experimental diet intake for 8 weeks, body weight was significantly lower in the HFCS group compared to the HF group (P < 0.05), and kidney fat and epididymal fat pad weights were significantly lower in the HFCS group compared to the HF group (P < 0.05). In the HFCS group, CCAAT/enhancer binding protein-${\beta}$, peroxisome proliferator-activated receptor-${\gamma}1$ (PPAR-${\gamma}1$), and PPAR-${\gamma}2$ mRNA expression levels were significantly reduced (P < 0.05) in the epididymal fat pad, whereas cluster of differentiation 36, lipoprotein lipase, acetyl-CoA carboxylase-1, sterol regulatory element binding protein-1c, pyruvate dehydrogenase kinase, isozyme-4, glucose-6-phosphate dehydrogenase, and stearoyl-CoA desaturase-1 mRNA expression levels were significantly decreased in liver and adipose tissues (P < 0.05). In the HFCS group, mRNA expression levels of AMP-activated protein kinase, hormone-sensitive lipase, and carnitine palmitoyltransferase-1 were elevated (P < 0.05). CONCLUSIONS: It can be concluded that high maysin corn silk extract inhibits expression of genes involved in adipocyte differentiation, fat accumulation, and fat synthesis as well as promotes expression of genes involved in lipolysis and fat oxidation, further inhibiting body fat accumulation and body weight elevation in experimental animals.

Chemical Properties of the Horticultural Soils in the Plastic Film Houses in Korea (우리나라 시설원예(施設園藝) 재배지(栽培地) 토양(土壤) 화학적특성(化學的特性))

  • Jung, Beung-Gan;Choi, Jeong-Weon;Yun, Eul-Soo;Yoon, Jung-Hui;Kim, Yoo-Hak;Jung, Goo-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.1
    • /
    • pp.9-15
    • /
    • 1998
  • A survey was conducted to investigate the chemical properties of soils such as pH, electrical conductivity, total organic matter content, soluble nitrate, available phosphate and major exchangeable canons, in plastic film houses at 513 sites. All the parameters surveyed in the plastic film house were much higher than those of open field soils. Particularly conspicuous was the accumulation of available P, exchangeable K and the occurrence of nitrate at relatively high concentration in both top soil(0-20 cm) and sub-soil(20-40 cm). In 70-80% of cases, the contents of available P and exchangeable K in top soils, were found to be higher than optimum levels. There was positive linear correlation between the content of exchangeable rations, and nitrate and EC of soils. The correlation coefficient was greater in the order of nitrate-EC > Mg-nitrate > K-nitrate > Ca-nitrate. The successive cultivation of horticultural crops in the plastic houses tended result in the accumulation of available P, exchangeable K and total organic matter in the soil.

  • PDF

Effects of Nitrogen Fertilization on Leaf Yield and Pyranocurmarine Accumulation in Angelica gigas Nakai

  • Seo, Young-Jin;Kim, Jong-Su;Park, Kee-Choon;Park, Chun-Geun;Ahn, Young-Sup;Cha, Seon-Woo;Kang, Yoon-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.421-427
    • /
    • 2015
  • Angelica gigas Nakai is one of the most widely used herbal medicines and is known to have many pharmaceutical effects including an anti-oxidant, anti-cancer etc. This study was carried out to investigate an effect of fertilization on leaf yield, production of dry-matter and accumulation of pyranocurmarine compounds such as decursin (DE) and decursinol angelate (DA) in Angelica gigas Nakai. Effect of fertilization was determined from response surface regression equation composing of 2 by 3 factorial arrangement of urea, sodium dihydrogen phosphate and potassium chloride. Yield of leaf in Angelica gigas Nakai significantly increased until 100 days after transplanting. Production of leaf also tended to increase with increasing nitrogen fertilization. Model of regression equation showed that leaf production depended upon nitrogen ($Pr>{\mid}t{\mid}$ : 0.087, 0.256 and 0.079). Also, statistical results between nitrogen application level and production of dry-matter showed significant relationship (p<0.05) and contents of dry-matter was highest in 10 kg 10a-1 treatment on 24 Sep. Active compound isolated and purified from leaf and root of Angelica gigas Nakai was identified as DE and DA by gas chromatograph-mass spectrophotometry (GC-MS). Concentration of DA as prevalent compound in leaf was highest on 20 Aug. but decreased on 24 Sep. Amount of DE and DA accumulated in Angelica gigas Nakai significantly increased with growth stages and nitrogen level. The result of our investigation imply that nitrogen fertilization is important factor for production of leaf and accumulation of pyranocurmarine in Angelica gigas Nakai as a medicinal/food materials.