• 제목/요약/키워드: Phishing websites

검색결과 14건 처리시간 0.024초

Robust URL Phishing Detection Based on Deep Learning

  • Al-Alyan, Abdullah;Al-Ahmadi, Saad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.2752-2768
    • /
    • 2020
  • Phishing websites can have devastating effects on governmental, financial, and social services, as well as on individual privacy. Currently, many phishing detection solutions are evaluated using small datasets and, thus, are prone to sampling issues, such as representing legitimate websites by only high-ranking websites, which could make their evaluation less relevant in practice. Phishing detection solutions which depend only on the URL are attractive, as they can be used in limited systems, such as with firewalls. In this paper, we present a URL-only phishing detection solution based on a convolutional neural network (CNN) model. The proposed CNN takes the URL as the input, rather than using predetermined features such as URL length. For training and evaluation, we have collected over two million URLs in a massive URL phishing detection (MUPD) dataset. We split MUPD into training, validation and testing datasets. The proposed CNN achieves approximately 96% accuracy on the testing dataset; this accuracy is achieved with URL schemes (such as HTTP and HTTPS) removed from the URL. Our proposed solution achieved better accuracy compared to an existing state-of-the-art URL-only model on a published dataset. Finally, the results of our experiment suggest keeping the CNN up-to-date for better results in practice.

Accuracy of Phishing Websites Detection Algorithms by Using Three Ranking Techniques

  • Mohammed, Badiea Abdulkarem;Al-Mekhlafi, Zeyad Ghaleb
    • International Journal of Computer Science & Network Security
    • /
    • 제22권2호
    • /
    • pp.272-282
    • /
    • 2022
  • Between 2014 and 2019, the US lost more than 2.1 billion USD to phishing attacks, according to the FBI's Internet Crime Complaint Center, and COVID-19 scam complaints totaled more than 1,200. Phishing attacks reflect these awful effects. Phishing websites (PWs) detection appear in the literature. Previous methods included maintaining a centralized blacklist that is manually updated, but newly created pseudonyms cannot be detected. Several recent studies utilized supervised machine learning (SML) algorithms and schemes to manipulate the PWs detection problem. URL extraction-based algorithms and schemes. These studies demonstrate that some classification algorithms are more effective on different data sets. However, for the phishing site detection problem, no widely known classifier has been developed. This study is aimed at identifying the features and schemes of SML that work best in the face of PWs across all publicly available phishing data sets. The Scikit Learn library has eight widely used classification algorithms configured for assessment on the public phishing datasets. Eight was tested. Later, classification algorithms were used to measure accuracy on three different datasets for statistically significant differences, along with the Welch t-test. Assemblies and neural networks outclass classical algorithms in this study. On three publicly accessible phishing datasets, eight traditional SML algorithms were evaluated, and the results were calculated in terms of classification accuracy and classifier ranking as shown in tables 4 and 8. Eventually, on severely unbalanced datasets, classifiers that obtained higher than 99.0 percent classification accuracy. Finally, the results show that this could also be adapted and outperforms conventional techniques with good precision.

머신러닝 기반 피싱 사이트 탐지 모델 (Machine Learning-based Phishing Website Detection Model)

  • 오수민;박민서
    • 문화기술의 융합
    • /
    • 제10권4호
    • /
    • pp.575-580
    • /
    • 2024
  • 소셜 미디어의 대중화로 지능화된 피싱 공격을 방어하기 위해 접근하고자 하는 사이트의 상태(정상/피싱)를 판별하는 것이 필요하다. 본 연구에서는 머신러닝 기반 분류 모델을 통해 사이트의 정상/피싱 여부를 예측하는 모델을 제안한다. 첫째, 'URL'에 대한 정보를 수집하여 수치 데이터로 변환한 후, 이상치를 제거한다. 둘째, 변수들 간의 상관관계 및 독립성을 파악하기 위해 VIF(Variance Inflation Factors)를 적용한다. 셋째, 머신러닝 기반 분류 모델을 활용하여 피싱 사이트 탐지 모델을 개발하고, 이를 통해 사이트의 상태를 예측한다. 분류 모델 중 랜덤 포레스트(Random Forest)의 성능이 가장 우수했으며, 테스트 데이터에서 정밀도(Precision) 93.74%, 재현율(Recall) 92.26%, 정확도(Accuracy) 93.14%를 보였다. 향후 이 연구는 다방면의 피싱 범죄 탐지에 적용할 수 있을 것으로 기대된다.

Mitigation of Phishing URL Attack in IoT using H-ANN with H-FFGWO Algorithm

  • Gopal S. B;Poongodi C
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권7호
    • /
    • pp.1916-1934
    • /
    • 2023
  • The phishing attack is a malicious emerging threat on the internet where the hackers try to access the user credentials such as login information or Internet banking details through pirated websites. Using that information, they get into the original website and try to modify or steal the information. The problem with traditional defense systems like firewalls is that they can only stop certain types of attacks because they rely on a fixed set of principles to do so. As a result, the model needs a client-side defense mechanism that can learn potential attack vectors to detect and prevent not only the known but also unknown types of assault. Feature selection plays a key role in machine learning by selecting only the required features by eliminating the irrelevant ones from the real-time dataset. The proposed model uses Hyperparameter Optimized Artificial Neural Networks (H-ANN) combined with a Hybrid Firefly and Grey Wolf Optimization algorithm (H-FFGWO) to detect and block phishing websites in Internet of Things(IoT) Applications. In this paper, the H-FFGWO is used for the feature selection from phishing datasets ISCX-URL, Open Phish, UCI machine-learning repository, Mendeley website dataset and Phish tank. The results showed that the proposed model had an accuracy of 98.07%, a recall of 98.04%, a precision of 98.43%, and an F1-Score of 98.24%.

A Comparative Study of Phishing Websites Classification Based on Classifier Ensemble

  • Tama, Bayu Adhi;Rhee, Kyung-Hyune
    • 한국멀티미디어학회논문지
    • /
    • 제21권5호
    • /
    • pp.617-625
    • /
    • 2018
  • Phishing website has become a crucial concern in cyber security applications. It is performed by fraudulently deceiving users with the aim of obtaining their sensitive information such as bank account information, credit card, username, and password. The threat has led to huge losses to online retailers, e-business platform, financial institutions, and to name but a few. One way to build anti-phishing detection mechanism is to construct classification algorithm based on machine learning techniques. The objective of this paper is to compare different classifier ensemble approaches, i.e. random forest, rotation forest, gradient boosted machine, and extreme gradient boosting against single classifiers, i.e. decision tree, classification and regression tree, and credal decision tree in the case of website phishing. Area under ROC curve (AUC) is employed as a performance metric, whilst statistical tests are used as baseline indicator of significance evaluation among classifiers. The paper contributes the existing literature on making a benchmark of classifier ensembles for web phishing detection.

A Comparative Study of Phishing Websites Classification Based on Classifier Ensembles

  • Tama, Bayu Adhi;Rhee, Kyung-Hyune
    • Journal of Multimedia Information System
    • /
    • 제5권2호
    • /
    • pp.99-104
    • /
    • 2018
  • Phishing website has become a crucial concern in cyber security applications. It is performed by fraudulently deceiving users with the aim of obtaining their sensitive information such as bank account information, credit card, username, and password. The threat has led to huge losses to online retailers, e-business platform, financial institutions, and to name but a few. One way to build anti-phishing detection mechanism is to construct classification algorithm based on machine learning techniques. The objective of this paper is to compare different classifier ensemble approaches, i.e. random forest, rotation forest, gradient boosted machine, and extreme gradient boosting against single classifiers, i.e. decision tree, classification and regression tree, and credal decision tree in the case of website phishing. Area under ROC curve (AUC) is employed as a performance metric, whilst statistical tests are used as baseline indicator of significance evaluation among classifiers. The paper contributes the existing literature on making a benchmark of classifier ensembles for web phishing detection.

Phishing Email Detection Using Machine Learning Techniques

  • Alammar, Meaad;Badawi, Maria Altaib
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.277-283
    • /
    • 2022
  • Email phishing has become very prevalent especially now that most of our dealings have become technical. The victim receives a message that looks as if it was sent from a known party and the attack is carried out through a fake cookie that includes a phishing program or through links connected to fake websites, in both cases the goal is to install malicious software on the user's device or direct him to a fake website. Today it is difficult to deploy robust cybersecurity solutions without relying heavily on machine learning algorithms. This research seeks to detect phishing emails using high-accuracy machine learning techniques. using the WEKA tool with data preprocessing we create a proposed methodology to detect emails phishing. outperformed random forest algorithm on Naïve Bayes algorithms by accuracy of 99.03 %.

Phishing Attack Detection Using Deep Learning

  • Alzahrani, Sabah M.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12호
    • /
    • pp.213-218
    • /
    • 2021
  • This paper proposes a technique for detecting a significant threat that attempts to get sensitive and confidential information such as usernames, passwords, credit card information, and more to target an individual or organization. By definition, a phishing attack happens when malicious people pose as trusted entities to fraudulently obtain user data. Phishing is classified as a type of social engineering attack. For a phishing attack to happen, a victim must be convinced to open an email or a direct message [1]. The email or direct message will contain a link that the victim will be required to click on. The aim of the attack is usually to install malicious software or to freeze a system. In other instances, the attackers will threaten to reveal sensitive information obtained from the victim. Phishing attacks can have devastating effects on the victim. Sensitive and confidential information can find its way into the hands of malicious people. Another devastating effect of phishing attacks is identity theft [1]. Attackers may impersonate the victim to make unauthorized purchases. Victims also complain of loss of funds when attackers access their credit card information. The proposed method has two major subsystems: (1) Data collection: different websites have been collected as a big data corresponding to normal and phishing dataset, and (2) distributed detection system: different artificial algorithms are used: a neural network algorithm and machine learning. The Amazon cloud was used for running the cluster with different cores of machines. The experiment results of the proposed system achieved very good accuracy and detection rate as well.

사용자의 패스워드 인증 행위 분석 및 피싱 공격시 대응방안 - 사용자 경험 및 HCI의 관점에서 (Behavioural Analysis of Password Authentication and Countermeasure to Phishing Attacks - from User Experience and HCI Perspectives)

  • 유홍렬;홍모세;권태경
    • 인터넷정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.79-90
    • /
    • 2014
  • 아이디와 패스워드를 통한 인증은 고전적인 방법이나 여전히 가장 널리 사용되고 있다. 오늘날 사용자들의 패스워드의 인증 수행 과정은 그 단순함과 편리함, 반복적인 수행으로 인해 적응무의식화 되었다. 즉, 의식화된 상태가 아닌 무의식적으로 인증을 수행하고 있다. 인증과정은 그 절차가 단순하고 반복 학습되어 인간의 깊은 사고 없이도 무의식적으로 수행할 수 있도록 학습될 수 있다. 또한 사용자들이 보유한 아이디와 패스워드 개수가 적기 때문에 기억에 의존할 수 있는 것도 적응무의식화의 원인 중 하나이다. 소수의 아이디와 패스워드 개수를 보유한 것과 달리 대개 사용자들은 수많은 웹, 모바일, 인터넷사이트 서비스에 가입되어 있다. 계정의 수는 많은 반면 소수의 아이디, 패스워드 쌍을 보유했을 때, 그리고 그것이 기억에 의존하여 관리될 때, 마지막으로 인증 과정이 무의식적으로 수행될 때 그것은 인간의 취약점이 된다. 과거에는 정보유출을 위한 해킹 공격이 하드웨어나 소프트웨어 등의 취약점을 이용한 것이었다면 최근에는 이와 더불어 인적 요소의 취약점을 이용하는 사회공학적 공격이 많아지고 있다. 특히 피싱 및 파밍 등과 같은 정보유출형 공격이 급증하고 있다. 피싱 및 파밍 공격은 인적 요소의 취약성을 이용한 것이며, 무의적으로 수행하는 인간의 인증 행위에 취약하다. 과거의 피싱 및 파밍에 대한 연구는 기술적인 분석이나 대책이 주를 이루었지만, 본 논문은 피싱 및 파밍 공격시 반응하는 인간의 행위에 관심이 있다. 사용자가 패스워드를 무의식적으로 입력 할 때, 그리고 인증 행위를 반복 수행할 때, 얼마나 많은 패스워드를 노출할 수 있는지 실험을 통해 확인했다.

How Do Children Interact with Phishing Attacks?

  • Alwanain, Mohammed I
    • International Journal of Computer Science & Network Security
    • /
    • 제21권3호
    • /
    • pp.127-133
    • /
    • 2021
  • Today, phishing attacks represent one of the biggest security threats targeting users of the digital world. They consist of an attempt to steal sensitive information, such as a user's identity or credit and debit card details, using various methods that include fake emails, fake websites, and fake social media messages. Protecting the user's security and privacy therefore becomes complex, especially when those users are children. Currently, children are participating in Internet activity more frequently than ever before. This activity includes, for example, online gaming, communication, and schoolwork. However, children tend to have a less well-developed knowledge of privacy and security concepts, compared to adults. Consequently, they often become victims of cybercrime. In this paper, the effects of security awareness on users who are children are investigated, looking at their ability to detect phishing attacks in social media. In this approach, two Experiments were conducted to evaluate the effects of security awareness on WhatsApp application users in their daily communication. The results of the Experiments revealed that phishing awareness training has a significant positive effect on the ability of children using WhatsApp to identify phishing messages and thereby avoid attacks.