• Title/Summary/Keyword: Phenylpropanoid

Search Result 118, Processing Time 0.028 seconds

Isolation and Characterization of Cinnamoyl-CoA Reductase Gene from Panax ginseng C. A. Meyer

  • Parvin, Shohana;Pulla, Rama Krishna;Shim, Ju-Sun;Kim, Yu-Jin;Jung, Dea-Yeoung;Kim, Se-Hwa;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.232-237
    • /
    • 2008
  • Cinnamoyl-CoA reductase (CCR, EC 1.2.1.44) catalyses the reduction of cinnamic acid CoA esters into their corresponding aldehydes, the first step of the phenylpropanoid pathway specially dedicated to monolignol biosynthesis. A cDNA clones encoding CCR have been isolated from Panax ginseng C.A. Meyer and its expression was investigated in response to abiotic stresses. The cDNA, designated PgCCR which is 865 nucleotides long and has an open reading frame of 590 bp with a deduced amino acid sequence of 176 residues. The PgCCR encoded protein possesses substantial homology with CCRs isolated and cloned from other sources; the highest identity (51.8%) was observed with CCR from Tomato (Lycopersicon esculentum). Under various stress conditions, expression patterns of the PgCCR were highly induced in adventitious and hairy roots by several abiotic stresses. These results indicated that PgCCR plays protective role against diverse environmental stresses.

cDNA cloning and expression pattern of Cinnamate-4-Hydroxylase in the Korean black raspberry

  • Baek, Myung-Hwa;Chung, Byung-Yeoup;Kim, Jin-Hong;Kim, Jae-Sung;Lee, Seung-Sik;An, Byung-Chull;Lee, In-Jung;Kim, Tae-Hoon
    • BMB Reports
    • /
    • v.41 no.7
    • /
    • pp.529-536
    • /
    • 2008
  • Cinnamate-4-hydroxylase (C4H) is a key enzyme in the phenylpropanoid pathway, which is responsible for synthesizing a variety of secondary metabolites that participate in development and adaptation. In this study, we isolated a full-length cDNA of the C4H gene from the Korean black raspberry (Rubus sp.) and found that this gene existed as a single gene. By comparing the deduced amino acid sequence of Rubus sp. C4H with other sequences reported previously we determined that this sequence was highly conserved among widely divergent plant species. In addition, quantitative real time PCR studies indicated that the C4H gene had a differential expression pattern during fruit development, where gene expression was first detected in green fruit and was then remarkably reduced in yellow fruit, followed by an increase in red and black fruit. To investigate the two peaks in expression observed during fruit development and ripening, we measured the flavonoid content. The content of the major flavanol of Korean black raspberry fruits was determined to be highest at the beginning of fruit development, followed by a gradually decrease according to the developmental stages. In contrast, the content of anthocyanins during the progress of ripening was dramatically increased. Our results suggest that the C4H gene in Korean black raspberry plays a role during color development at the late stages of fruit ripening, whereas the expression of C4H gene during the early stages may be related to the accumulation of flavanols.

The Effect of Acteoside on Histamine Release and Arachidonic Acid Release in RBL-2H3 Mast Cells

  • Lee, Jin-Hee;Lee, Ji-Yun;Kang, Hyo-Suk;Jeong, Chan-Hun;Moon, Hee;Whang, Wan-Kyunn;Kim, Chang-Jong;Sim, Sang-Soo
    • Archives of Pharmacal Research
    • /
    • v.29 no.6
    • /
    • pp.508-513
    • /
    • 2006
  • The effect of acteoside, a phenylpropanoid glycoside isolated from Clerodendron trichotomum Thunberg, on histamine and arachidonic acid release was investigated in RBL 2H3 cells. Histamine was dose-dependently released from RBL 2H3 cells by melittin, arachidonic acid and thapsigargin. In extracellular $Ca^{2+}-free$ solution, basal secretion of histamins increased by two fold. The response of histamine release to melittin and thapsigargin in $Ca^{2+}-free$ solution was significantly decreased, whereas the response to arachidonic acid was significantly increased as compared with those in normal solution. Acteoside inhibited histamine release induced by melittin, arachidonic acid and thapsigargin in a dose-dependent manner in the presence or absence of extracellular $Ca^{2+}$. However, the inhibitory activity of acteoside was more potent in normal solution than that in $Ca^{2+}-free$ solution. These data suggest that inhibitory mechanism of acteoside on histamine release may be related to extracellular $Ca^{2+}$. On the other hand, acteoside significantly inhibited arachidonic acid release and prostaglandin $E_2$ production Induced by $0.5\;{\mu}M$ melittin. It is possible that acteoside may be developed as an anti-inflammatory agent.

Bioactive Phenylpropanoids from Asiasarum sieboldi Roots (세신(細辛)의 생리활성물질(生理活性物質) Phenylpropanoids의 분리(分離))

  • Kim, Geum-Sook;Park, Chang-Kie;Baek, Nam-In;Seong, Jae-Duck;Kwack, Young-Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.5 no.2
    • /
    • pp.126-130
    • /
    • 1997
  • Treatment of ethylacetate extract of Asiasarum sieboldi inhibited the germination and the growth of radish seeds. Two phenylpropanoids were isolated from ethylacetate extract. Their structures were identified as safrole and o-methyleugenol by spectroscopic evidence. From the test to inhibitory effect, o-methyleugenol had inhibited the germination and the growth of radish seeds, while safrole did not. The germination rate and radicle length of radish seeds were decreased to 63.0%, 31.5 % of control at 5mg/ml of o-methyleugenol, respectively. At the same concentration, o-methyleugenol inhibited the hypocotyl growth up to 100%.

  • PDF

Phenolic compounds from the leaves of eggplant (Solanum melongena L.) (가지(Solanum melongena L.) 잎으로부터 페놀 화합물의 분리 및 동정)

  • Baek, Dong-Ryeol;Lee, Min-Jee;Baek, Nam-In;Seo, Kyeong-Hwa;Lee, Youn-Hyung
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.2
    • /
    • pp.103-106
    • /
    • 2016
  • The leaves of eggplant (Solanum melongena L.) were extracted with 80 % aqueous MeOH, and the concentrated extract was partitioned with n-hexane, EtOAc, n-BuOH, and water fractions. From the n-BuOH fraction, five compounds were isolated through the repeated silica gel, octadecyl silica gel, and Sephadex LH-20 column chromatographies. On the basis of physic-chemical and spectroscopic data including mass spectrometry, infrared spectroscopy, and nuclear magnetic resonance, they were identified to be caffeic acid (1), chlorogenic acid (2), cryptochlorogenic acid (3), panasenoside (4), and (6R,7E,9R)-4,7-megastigmadien-3-one-9-${\beta}$-${\small{D}}$-glucopyranoside (5). Compounds 3 and 4 were isolated for the first time from the leaves of S. melongena L. in this study.

Expression Analysis of Flower Color Related Genes in Spray-type 'ARTI-purple' Developed by Gamma-ray Mutagenesis (감마선 변이체 스프레이 국화 'ARTI-purple'의 화색 관련 유전자 발현 분석)

  • Sung, Sang Yeop;Lee, Yu-Mi;Kim, Sang Hoon;Ha, Bo-Keun;Kang, Si-Yong;Kim, Jin-Baek;Kim, Hong Gi;Kim, Dong Sub
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.147-152
    • /
    • 2012
  • Anthocyanins are major plant pigment and produced through phenylpropanoid pathway. In this study, anthocyanin biosynthesis mechanisms of chrysanthemum flowers were studied using 'Argus' and flower color mutant 'ARTI-purple' which were induced by 40 Gy gamma irradiation ($Co^{60}$). And, three chrysanthemums, 'Ford', 'Yeonja' and 'Orando' were additionally used as the check varieties to understand the relationship between flower color and expression patterns of genes. The expression patterns of the anthocyanin biosynthetic genes were matched with the flower color of the check varieties. High anthocyanin concentration of 'Orando' showed the high expression of anthocyanin biosynthetic genes. In the white flower of 'Ford', expressions of CHI, DFR and ANS were not identified. Despite different flower color, 'Argus' and 'ARTI-purple' showed different expression patterns compared with the check varieties. From the dot blot analysis, we screened the seven genes showing the different expressions between 'Argus' and 'ARTI-purple'.

Molecular Cloning of Two Genes Encoding Cinnamate 4-Hydroxylase (C4H) from Oilseed Rape (Brassica napus)

  • Chen, An-He;Chai, You-Rong;Li, Jia-Na;Chen, Li
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.247-260
    • /
    • 2007
  • Cinnamate 4-hydroxylase (C4H) is a key enzyme of phenylpropanoid pathway, which synthesizes numerous secondary metabolites to participate in development and adaption. Two C4H isoforms, the 2192-bp BnC4H-1 and 2108-bp BnC4H-2, were cloned from oilseed rape (Brassica napus). They both have two introns and a 1518-bp open reading frame encoding a 505-amino-acid polypeptide. BnC4H-1 is 57.73 kDa with an isoelectric point of 9.11, while 57.75 kDa and 9.13 for BnC4H-2. They share only 80.6% identities on nucleotide level but 96.6% identities and 98.4% positives on protein level. Showing highest homologies to Arabidopsis thaliana C4H, they possess a conserved p450 domain and all P450-featured motifs, and are identical to typical C4Hs at substrate-recognition sites and active site residues. They are most probably associated with endoplasmic reticulum by one or both of the N- and C-terminal transmembrane helices. Phosphorylation may be a necessary post-translational modification. Their secondary structures are dominated by alpha helices and random coils. Most helices locate in the central region, while extended strands mainly distribute before and after this region. Southern blot indicated about 9 or more C4H paralogs in B. napus. In hypocotyl, cotyledon, stem, flower, bud, young- and middle-stage seed, they are co-dominantly expressed. In root and old seed, BnC4H-2 is dominant over BnC4H-1, with a reverse trend in leaf and pericarp. Paralogous C4H numbers in Brassicaceae genomes and possible roles of conserved motifs in 5' UTR and the 2nd intron are discussed.

Molecular Cloning and Characterization of a Novel Stem-specific Gene from Camptotheca acuminata

  • Pi, Yan;Liao, Zhihua;Chai, Yourong;Zeng, Hainian;Wang, Peng;Gong, Yifu;Pang, Yongzhen;Sun, Xiaofen;Tang, Kexuan
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.68-75
    • /
    • 2006
  • In higher plants, P450s participate in the biosynthesis of many important secondary metabolites. Here we reported for the first time the isolation of a new cytochrome P450 cDNA that expressed in a stem-specific manner from Camptotheca acuminata (designated as CaSS), a native medicinal plant species in China, using RACE-PCR. The full-length cDNA of CaSS was 1735 bp long containing a 1530 bp open reading frame (ORF) encoding a polypeptide of 509 amino acids. Bioinformatic analysis revealed that CASS contained a heme-binding domain PFGXGRRXCX and showed homology to other plant cytochrome P450 monooxygenases and hydroxylases. Southern blotting analysis revealed that there was only one copy of the CaSS present in the genome of Camptotheca acuminata. Northern blotting analysis revealed that CaSS expressed, in a tissue-specific manner, highly in stem and lowly in root, leaf and flower. Our study suggests that CaSS is likely to be involved in the phenylpropanoid pathway.

Phytochemical Constituents of Climacium dendroides (곧은 나무이끼(Climacium dendroides)의 식물 화학적 성분연구)

  • Nam, Jung-Hwan;Cho, In-Sook;Kim, Su-Jeong;Nam, Chun-Woo;Seo, Jong-Taek;Yoo, Dong-Lim;Kim, Won-Bae;Ryu, Seung-Yeol;Lee, Eung-Ho;Kim, Min-Young;Yoo, Young-Min;Park, Hee-Juhn;Jung, Hyun-Ju
    • Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.136-141
    • /
    • 2008
  • The chromatographic separation of organic solvent extracts of liverwort led to the isolation of six compounds. 2-Chromenone (1), 3, 4-dihydroxy-cinnamic acid (2), 3, 3', 4', 5, 7-pentahydroxy-2-phenylchromen-4-one (3), kaemperol-3-O-${\beta}$-D-glucopyranoside (4), 3-[[3-(3,4-Dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-1, 4, 5-trihydroxycyclohexane carboxylic acid (5) and quercetin-3-O-rutinoside (6) were isolated from the methanolic extracts of the all part of Climacium dendroides. Their structure were established by chemical and spectroscopic methods. All compounds were isolated for the first time from this plant Climacium dendroides.

Comparative Analysis of Local Green Tea in Korea by STS-RFLP (STS-RFLP법을 이용한 국내지역 재배녹차의 비교분석)

  • Cho, Kiu-Hyung;Jo, Aruna;Tsuge, Tomohiko;Kim, Jong-Cheol;Kim, Ru-Mi;Yoon, Ho-Sung;Kim, Gyung-Tae
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1415-1419
    • /
    • 2010
  • Consumption of green tea has increased along with increasing concern regarding healthier lifestyles, and many brands of green tea are sold with a label indicating the region of Korea in which the tea was produced. However, there is little information on identifying the difference between the green tea cultivars according to the region they were grown. Here, 9 green tea cultivars collected from Hadong region, Bosung region, China and Japan were subjected to the STS-RFLP analysis. Using the coding and noncoding DNA regions of genes related to the phenylpropanoid pathway, such as phenylalanine ammonia-lyase, chalcone synthase and dihydroflavonol 4-reductase, we have identified the differences between green tea cultivars according to the region they were grown in. In this study, we showed a STS-RFLP method of green tea analysis which easily distinguished different kinds of tea using the primers as described. In addition, we identified that the green tea cultivars from Hadong and Bosung displayed a different profile when PAL intron was digested with Dde I, suggesting that a rapid authentication system for green tea cultivars grown in different regions in Korea is available.