Global warming also has effects on the phenology. The limitation of phenology study is an acquisition of phenology data. Satellite images analysis can make up limitation of monitering data. This study is to analyze spatial distribution and characteristics of phenology changes using MODIS images. Research data collected images of 16 day intervals of 11 years from year 2001 to 2010. The data analyzed 228 images of 11 years. It can figure out changes of phenology by analyzing enhanced vegetation index of MODIS image. We made a comparison between changes of phenology and flowering of cherry blossoms. As a results, Startup of season spatially was getting late from southern area to north area. Startup of Phenology was foreshortened 13 days during 11 years, and change ratios of cherry blooming was getting more faster from 0.18 dat to 0.22 day per year during that same period.
This study aims to compare supervised classification methods with phenology-based approaches, specifically pixel-based and segment-based methods, for accurate crop mapping in agricultural landscapes. We utilized Sentinel-2A imagery, which provides multispectral data for accurate crop mapping. 31 normalized difference vegetation index (NDVI) images were calculated from the Sentinel-2A data. Next, we employed phenology-based approaches to extract valuable information from the NDVI time series. A set of 10 phenology metrics was extracted from the NDVI data. For the supervised classification, we employed the maximum likelihood (MaxLike) algorithm. For the phenology-based approaches, we implemented both pixel-based and segment-based methods. The results indicate that phenology-based approaches outperformed the MaxLike algorithm in regions with frequent rainfall and cloudy conditions. The segment-based phenology approach demonstrated the highest kappa coefficient of 0.85, indicating a high level of agreement with the ground truth data. The pixel-based phenology approach also achieved a commendable kappa coefficient of 0.81, indicating its effectiveness in accurately classifying the crop types. On the other hand, the supervised classification method (MaxLike) yielded a lower kappa coefficient of 0.74. Our study suggests that segment-based phenology mapping is a suitable approach for regions like South Korea, where continuous cloud-free satellite images are scarce. However, establishing precise classification thresholds remains challenging due to the lack of adequately sampled NDVI data. Despite this limitation, the phenology-based approach demonstrates its potential in crop classification, particularly in regions with varying weather patterns.
본 연구를 통해 설계된 테스트베드 지역의 식물계절 관측과 적설 탐지는 반복 이미지 학습 및 정량적 RGB 분석을 통해 정확도 높은 산림 식물계절 및 적설 관측 기반을 마련하였다. 무인카메라 기반 식물계절 및 적설 탐지 기술 개발은 복잡한 산악지형이라는 특수한 환경에서 다양한 고도의 환경 데이터를 실시간 수집하는 체계를 구축함으로써 산림환경 연구를 위한 기초 데이터를 수집하는 계기가 되었다. 첨단기술을 활용한 주요 산악지역의 식물계절 변화 탐지 연구는 산림청에서 제공하는 개화 및 개엽 예측 정보의 검증과 산림휴양쾌적지수 고도화 등에 활용 가능하며, 향후 농림위성의 NDVI 등 영상 이미지의 검⋅보정용 자료로써 활용 가치가 매우 높다. 무인카메라 활용 기술은 산림 식물계절 및 적설 탐지뿐만 아니라 산림재해 감시 및 산림관리 등 다양한 산림분야에서도 활용될 수 있을 것으로 기대된다.
월별 기후통계량의 조화해석에 의해 생성한 일 기온 자료가 생물계절모형의 입력자료로서 적합한지 여부를 평가하여 농림업 부문 기후시나리오 응용정보 제작 상오류를 제거하기 위해 본 연구를 수행하였다. 서울관측소의 1971-2000 평년 월별 일 최고기온과 최저기온 평균값으로부터 조화해석에 의해 365일 간 기온자료를 생성하였다. 이것을 널리 검증된 온도시간 기반의 벚꽃 개화모형에 입력하여 휴면, 발아, 개화 등 주요 식물계절을 추정하였다. 같은 기간 중 실측기온자료에 의해 모형을 구동시켜 얻은 결과와 비교한 바, 연차변이를 전혀 반영하지 못하는 것은 물론, 휴면해제 25일 단축, 강제 휴면기간 57일 연장, 발아 14일 지연, 개화 13일 지연등 평균값도 크게 달라 식물계절을 크게 왜곡시키는 것으로 판단되었다. 대안으로서 확률추정기법에 의해 일기상자료를 생성하고 이를 이용하여 모형을 구동한 결과 실측결과에 비해 휴면해제 6일 단축, 강제휴면기간 10일 단축, 발아 3일 지연, 개화 2일 지연 등으로 조화해석자료 사용에 비해 크게 개선되었음을 확인하였다. 연차변이양상 역시 실측기온에 의한 모의결과와 크게 다르지 않아, 향후 이 자료를 농업부문 전자기후도 제작에 적용하면 기후변화 적응정책 수립을 실용수준에서 지원할 수 있을 것으로 보인다.
The objective of this study was to analyze correlation between phenological characteristics of Salix spp. and meteorological factors in the Upo wetlands. Phenology of Salix subfragilis Andersson and Salix chaenomeloides Kimura was monitored from 2007 to 2012. Meteorological variables were monitored by Korea Meteorological Administration (Hap-chon). Average date of flowering, fruiting, seed dispersion was 86, 113, 136 days for S. subfragilis and 112, 140, 164 days for S. chaenomeloides as Julian days. Flowering of S. subfragilis and S. chaenomeloides were correlated with daily mean air temp. in March (r=-0.92, r=-0.85, p<0.05). Fruiting of S. subfragilis was correlated with total precipitation between Jan and March of previous year (r=-0.90, p<0.01), however, the fruiting of S. chaenomeloides was highly correlated with max. temp. in Jan of previous year (r=0.99, p<0.01). Seed dispersion of both species is correlated with min. temp. in Feb. Phenology monitoring will contribute to understanding Salix spp. response against climate change.
기후변화는 식물계절주기에 큰 영향을 미쳤으며, 이로 인해 유기적인 상호관계 하에 있는 생태계 내 다른 생물들까지도 피해를 받는다는 것이 밝혀졌다. 그러나 국내의 경우 식물계절 조사 자료의 구축이 미흡하여 기후와 식물계절간 관계와 관련된 연구를 수행하는데 있어 어려움이 있다. 이에 본 연구에서는 위성영상을 이용한 식물계절 분석방법을 사용하여 효율적으로 국내 산림의 생육개시일을 도출하였다. 또한 생육개시일-기온요인간 상관관계를 분석하여 생육개시일 변동에 가장 영향력이 큰 변수를 도출해보고자 하였다. 분석결과, 국내 산림지역의 생육개시일은 4월 평균기온 그리고 TSOGmin($3^{\circ}C$, 12일)과 가장 상관성이 큰 것으로 나타났다. 이러한 결과는 추후 미래의 기후변화 시나리오 자료를 통해 식물계절 변화를 예측할 수 있는 유용한 자료로 사용될 수 있을 것으로 판단된다.
Prediction of rice developmental stage is necessary for proper crop management and a prerequisite for growth simulation as well. The objectives of the present study were to find out the relationship between the plastochrone index(PI) and the developmental index(DVI) estimated by non-parametric phenology model which simulates the duration from seedling emergence(DVI=0) to heading(DVI=l) by employing daily mean air temperature and daylength as predictor variables, and to confirm the correspondency of developmental indice to panicle developmental stages based on this relationship. Four japonica rice cultivars, Kwanakbyeo, Sangpungbyeo, Dongjinbyeo, and Palgumbyeo which range from very early to very late in maturity, were grown by sowing directly in dry paddy field five times at an interval of two weeks. Data for seedling emergence, leaf appearance, differentiation stage of primary rachis branch and heading were collected. The non-parametric phenology model predicted well the duration from seedling emergence to heading with errors of less than three days in all sowings and cultivars. PI was calculated for every leaf appearance and related to the developmental index estimated for corresponding PI. The stepwise polynomial analysis produced highly significant square-rooted cubic or biquadratic equations depending on cultivars, and highly significant square-rooted biquadratic equation for pooled data across cultivars without any considerable reduction in accuracy compared to that for each cultivar. To confirm the applicability of this equation in predicting the panicle developmental stage, DVI at differentiation stage of primary rachis branch primordium was calculated by substituting PI with 82 corresponding to this stage, and the duration reaching this DVI from seedling emergence was estimated. The estimated duration revealed a good agreement with that observed in all sowings and cultivars. The deviations between the estimated and the observed were not greater than three days, and significant difference in accuracy was not found for predicting this developmental stage between those equations derived for each cultivar and for pooled data across all cultivars tested.
Crop classification plays a vitalrole in monitoring agricultural landscapes and enhancing food production. In this study, we explore the effectiveness of Long Short-Term Memory (LSTM) models for crop classification, focusing on distinguishing between apple and rice crops. The aim wasto overcome the challenges associatedwith finding phenology-based classification thresholds by utilizing LSTM to capture the entire Normalized Difference Vegetation Index (NDVI)trend. Our methodology involvestraining the LSTM model using a reference site and applying it to three separate three test sites. Firstly, we generated 25 NDVI imagesfrom the Sentinel-2A data. Aftersegmenting study areas, we calculated the mean NDVI values for each segment. For the reference area, employed a training approach utilizing the NDVI trend line. This trend line served as the basis for training our crop classification model. Following the training phase, we applied the trained model to three separate test sites. The results demonstrated a high overall accuracy of 0.92 and a kappa coefficient of 0.85 for the reference site. The overall accuracies for the test sites were also favorable, ranging from 0.88 to 0.92, indicating successful classification outcomes. We also found that certain phenological metrics can be less effective in crop classification therefore limitations of relying solely on phenological map thresholds and emphasizes the challenges in detecting phenology in real-time, particularly in the early stages of crops. Our study demonstrates the potential of LSTM models in crop classification tasks, showcasing their ability to capture temporal dependencies and analyze timeseriesremote sensing data.While limitations exist in capturing specific phenological events, the integration of alternative approaches holds promise for enhancing classification accuracy. By leveraging advanced techniques and considering the specific challenges of agricultural landscapes, we can continue to refine crop classification models and support agricultural management practices.
Background: The flowering and fruiting periods play an important role in biological processes. The deciduous dipterocarp forest is an important forest type in Thailand, however the phenological studies are still limited, particularly in different plant life forms. Thus, the present study focused on the flowering and fruiting phenology of herbs, climbers, shrubs, and trees in the deciduous dipterocarp forest at Lampang province of Northern Thailand. Field visits were made to record plant life forms and observe reproductive phenological events at monthly intervals from November 2018 to October 2019 and September to December 2020. Results: The phenological observations were based on 126 species of 45 families and 102 genera. Flowering and fruiting periods showed similar patterns in herbaceous plants, climbers, and shrubs. Most of these species produced flowers and fruits from the end of the rainy season (October) to the winter season (November-January). Whereas most of flowering and fruiting trees were found from the summer season (March-April) to the beginning of the rainy season (May-June). Most of the dry-fruited species occurred during the dry period (winter and summer seasons), while the majority of fleshy-fruited species dominated in the wet period (rainy season). The statistical analysis supported the phenological patterns of flowering and fruiting in the present study. There were significant negative correlations between the number of flowering and fruiting species and temperature. The number of flowering and fruiting species is significantly impacted by the interaction between seasons and plant life forms. Conclusions: Plant life form seems to be the important factor that affects the different phenological patterns in the studied plants. The abiotic and biotic factors play major roles in reproductive phenology. However, long-term study and in-depth phenological observations are necessary for better understanding.
대기 이산화탄소 농도 증가가 상수리나무 잎의 생물계절현상에 미치는 영향을 알아보고자 본 연구를 수행하였다. 상부개방형온실을 이용하여 대기 이산화탄소 농도를 높여 처리하였다. 대기 이산화탄소 처리 농도의 설정은 현재 농도, 현재 농도의 1.4배, 현재 농도의 1.8배 등 3 처리구로 하였고, 온실효과에 대한 검정을 위하여 상부개방형온실 외부에 비교구를 설치하였다. 잎의 생물계절현상은 2013년에 동아 파열, 개엽, 단풍, 낙엽에 대하여 각 생물계절현상이 나타나는 일자와 적산온도를 조사하였고, 2014년에는 봄철 계절현상인 동아 파열과 개엽에 대하여 각가의 일자와 적산온도를 조사하였다. 동아 내의 탄수화물 함량 분석을 위하여 2014년 3월에 각 처리구별로 동아를 채취하여 분석하였다. 봄철의 생물계절현상이 연도간에 차이가 나타났는데, 2013년도에는 동아 파열과 개엽 시기가 이산화탄소 처리 농도가 증가함에 따라 빨라지는 것으로 나타났다. 봄철 기온이 높았던 2014년도에는 동아 파열 및 개엽 시기 모두 처리구간에 차이가 나타나지 않았다. 단풍과 낙엽 등 가을철의 생물계절현상은 이산화탄소 처리 농도가 증가함에 따라서 늦어지는 것으로 나타났다. 동아 내의 탄수화물 함량 분석 결과 이산화탄소 처리 농도가 증가함에 따라서 전분, 총 비구조 탄수화물, 총 수용성 당류의 함량이 증가하는 것으로 나타났다. 대기 이산화탄소 농도의 상승은 상수리나무의 개엽을 빠르게 하고 낙엽을 늦추어 전체적인 생육기간을 연장시키게 될 것이다. 봄철의 이른 개엽은 동해피해의 가능성을 높이나, 개엽 시기는 온도에 의한 영향을 크게 받으며, 전년도 이산화탄소 농도 증가에 의하여 동아 내의 전분, 수용성 당 등 탄수화물 함량이 증가되기 때문에 봄철의 동해피해 가능성은 낮을 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.