• Title/Summary/Keyword: Phenolic compound content

Search Result 295, Processing Time 0.029 seconds

Rusty-Root Tolerance and Chemical Components in 4-year old Ginseng Superior Lines (4년생 인삼계통의 적변내성 및 화학성분 특성)

  • Lee Sung-Sik;Lee Myong-Gu;Choi Kwang-Tae
    • Journal of Ginseng Research
    • /
    • v.23 no.2 s.54
    • /
    • pp.61-66
    • /
    • 1999
  • Experiments were carried out to examine the rusty tolerance in 61 inbred lines of ginseng cultivated in field, and chemical components were analyzed to clarify the difference between healthy and rusty ginseng roots. Among them, 10 lines showed rusty tolerance (RT) while 10 lines showed rusty sensitivity (RS). The content of phenolic compound in RT was lower than that in RS in cortex, epidermis and branch & fine roots, but it was not difference between RT and RS in stele. The contents of K, Ca, Na in RT were lower than RS in cortex, and the content of Mg, Fe, Na, Mn, AI, Si in RT were lower than RS in epidermis, and the content of Fe in RT were lower than RS in branch & fine roots, but mineral contents were not difference between RT and RS in stele. The content of phenolic compound in healthy cortex was lower than that in rusty cortex in same 6-year roots, but the mineral contents were not difference between healthy and rusty cortex in same 6-year roots. In root of seedlings, the contents of phenolic compound, K and Na in RT were lower than RS. It was suggested that the contents of phenolic compound, K and Na might be marker to select rusty tolerance ginseng lines.

  • PDF

Antioxidative Activity and Tyrosinase Inhibitory Activity of the Extract and Fractions from Arctium lappa Roots and Analysis of Phenolic Compounds (우엉 뿌리 추출물의 항산화 및 Tyrosinase 저해 활성과 Phenolic Compound 분석)

  • Im, Do Youn;Lee, Kyoung In
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.2
    • /
    • pp.141-146
    • /
    • 2014
  • In this study, we investigated on antioxidative activities and tyrosinase inhibitory activities of methanol extract and its fractions from roots of Arctium lappa. The total phenolic compound and flavonoid content of the ethylacetate fraction was found to be 818.29 mg/g and 360.59 mg/g as the highest content. In the measurement of DPPH radical scavenging ability and tyrosinase inhibitory activity, the ethylacetate fraction was higher than the other fractions and the extract. In addition, comparative analysis of phenolic compounds by liquid chromatography-mass spectrometry (MS)/MS system under the multiple-reaction monitoring (MRM) with negative-ion electrospray ionization mode. The main phenolic compounds in the extract and fractions of roots from Arctium lappa were cynarin and chlorogenic acid. The main phenolic compound of the ethylacetate fraction was cynarin. n-Butanol fraction had a significantly higher chlorogenic acid content than other samples. In conclusion, DPPH radical scavenging ability and tyrosinase inhibitory activity of the cynarin-riched ethylacetate fraction showed the highest activity.

Alteration in Phenolic Compounds and Antioxidant Activities of Aronia melanocarpa Ethanol Extracts following Fermentation Using Different Strains of Leuconostoc mesenteroides to Develop Natural Antibiotic Alternative (항생제 대체 천연물질을 위한 아로니아 주정 추출물 개발에 있어 다양한 Leuconostoc mesenteroides 균주를 이용한 발효가 페놀계 화합물 및 항산화활성 변화에 미치는 영향)

  • Hwang, Joo Hwan;Kang, Ju Hui;Lee, Ki Hwan;Lee, Jae Hoon;Lee, Sang Moo;Kim, Nam Hyung;Kim, Joo Young;Kim, Eun Joong
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.825-839
    • /
    • 2014
  • Antioxidant activity is important for reducing oxidative stress that causes various metabolic disorders. Metabolic disorders are highly related to loss of productivity in livestock. Therefore, development of effective antioxidant compounds originating from plants is important for organic agriculture. Phenolic compounds in edible plants are regarded as major components relevant to antioxidant activity. The present study investigated the changes in antioxidant activity and phenolic compound profiles of Aronia (Aronia meloncarpa) by fermentation using different strains of Leuconostoc mesenteroides. A total of 5 strains of L. mesenteroides were used as starter cultures and their ${\beta}$-glucosidase activities were measured. A total of 6 experiment runs were prepared, one for control (uninoculated) and the others (inoculated) for treatments. For biological activity, antioxidant and antibacterial activities were measured. For phenolic compound profiling, TLC and HPLC analysis were performed. The strains of KACC12313 and KACC12315 showed greater enzyme activity than others. Treatment with KCCM35046 showed strong and broad antibacterial activity against to Listeria monocytogenes. Treatments with KCCM35046 and KACC12315 showed the highest total polyphenol content. The highest antioxidant activity was found in KACC12315 treatment. No remarkable alteration was found in thin layer chromatography (TLC) analysis. In phenolic compound profiling analysis, KCCM35046 showed notable alteration in compound area ratio compared to others and also showed the highest caffeic acid content. In chlorogenic acid, treatments with KCCM35046 and KACC12315 showed great content than others. Treatment with KACC12315 showed the greatest content of trans-ferulic acid. As a result of relative performance indexing analysis, L. mesenteroides KCCM35046 and KACC12315 were selected as the best strain for the fermentation of Aronia.

Environmental Adaptability of Eupatorium rugosum : Relationship between Accumulation of Heavy Metals and Phenolic Compounds (서양등골나물의 환경적응력 : 중금속 축적과 Phenolic Compounds의 관계)

  • 김용옥;박종야;이호준
    • The Korean Journal of Ecology
    • /
    • v.26 no.1
    • /
    • pp.5-12
    • /
    • 2003
  • Seed germination rate and seedling growth were measured on 6 different species(Phytolacca americana, Eupatorium rugosum, Rumex acetocella, Echinochloa crusgalli, Cassia mimosoides var. nomame, Setaria viridis) treated with leaf extract of E. rugosum. Total phenolic compound and heavy metal were analyzed on leaf and soil with and without E. rugosum. The growth of P. americana seedlings were stimulated by 10% and 25% of E. rugosum water extract treatment. The content of total phenolic compounds in soil was lower than that of leaf extract, and 25% was confirmed as threshold concentration in natural systems because the total phenolic compounds were not significantly different between the control soils and the soil treated with 10%, and 25% extract. Total phenolic compound concentrations of the leaf extracts were highest (1.66 mg/l) with E. rugosum grown under the Quercus forest canopy and lowest (1.09 mg/l) for the plant grown in the mixed forest edge. Leaf extracts of plants selected in different sampling sites (Forest interior, Forest edge, under Pinus Canopy and Quercus Canopy) were significant, while soil extracts were not. Seed germination of R. acetocella and S. viridis were significantly inhibited at over 50% concentrations of E. rugosum, but C. mimosoides var. nomame was not affected at any concentration. The radicle and shoot growth of the native species group were reduced two times more than those of the exotic species group by the treatment of extracts. Especially, the seed germination percentage and dry weight of E. rugosum were greater than those of the control group by treatments with extracts of 10% and 25%. Analysis of aqueous extracts from E. rugosum by HPLC identified 6 phenolic compounds: caffeic acid (460.9 mg/l), benzoic acid (109.7 mg/l), protocatechuic acid (7.3 mg/l), ρ-hydroquinone (6.0 mg/l), cinnamic acid (2.7 mg/l) and hydroquinone (0.23 mg/l). The seed germination of P. americana was also inhibited dramatically by protocatechuic acid and cinnamic acid even though the content of caffeic acid (460.9 mg/l) was the highest among analyzed phenolic compounds. The heavy metal content of soil without A. altissima was higher than that of soil with E. rugosum. Particularly, Al, Fe and Mn was considerably high and most of the heavy metal were accumulated in leaves where a high level of total phenolic compounds was found.

Optimization of Conditions for High Concentration of Eleutheroside E and Chlorgenic Acid Components of Acanthopanax koreanum Stem Extract

  • Kim, Sung Gi;Yang, Byung Wook;Lee, Jae Bum;Kim, Sa Hyun;Ko, Sung Kwon
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.319-326
    • /
    • 2020
  • This study was conducted to develop a new functional material by optimizing the conditions for high concentrations of chlorogenic acid and eleutheroside E in Acanthopanax koreanum stem. The total phenolic compound content was the highest in the 20 hours sonication Acanthopanax koreanum stem extract (UAK-20). In addition, eleutheroside E, a typical functional ingredient of Cortex Acanthopanacis, in the 20 hours treated Acanthopanax koreanum stem extract showed the highest content at 1.646%. However, another functional ingredient, chlorogenic acid, showed the highest content of 2.625% in 1 hour treated Acanthopanax koreanum stem extract. Therefore, it is considered that the optimal conditions for high concentrations of total phenolic compound and eleutheroside E are 20 hours sonication Acanthopanax koreanum stem extract.

Seasonal Variation of Phenolic Component Contents in the Stems of Korean Acanthopanax senticosus (계절 변화에 따른 한국산 가시오가피 줄기의 페놀성 성분 함량 분석)

  • Do Hyeong Kim;Sung Kwon Ko;Byung Wook Yang
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.23 no.1
    • /
    • pp.10-17
    • /
    • 2023
  • Objectives: The aim of this study was to compare the total phenolic content of Korean Acanthopanax senticosus stems harvested in different seasons and provide basic data for developing functional reinforcement products based on the optimal harvesting time. Methods: Each sample harvested in different seasons was extracted and concentrated twice for 2 hours using 70% ethyl alcohol. Phenolic compounds were analyzed using high-performance liquid chromatography for simultaneous multi-component analysis of 14 compounds, including syringaresinol and so on. Results: The results showed that the stem of Korean Acanthopanax senticosus harvested in winter (November 29th) (EAS-5) had the highest phenolic content of 1.038%. The stem of Korean Acanthopanax senticosus harvested in autumn (October 1st) (EAS-4) showed the second-highest phenolic content of 0.764%, followed by the stem of Korean Acanthopanax senticosus harvested in spring (February 2nd) (EAS-1) with a content of 0.390%. On the other hand, the stem of Korean Acanthopanax senticosus harvested in the summer (June 2nd) (EAS-3) showed the lowest content at 0.342%. In conclusion, the stem of Korean Acanthopanax senticosus harvested in winter (EAS-5) showed the highest phenolic compound content. Conclusions: Considering the extraction yield and the total phenolic content, as well as the concentrations of key functional components such as eleutheroside B, chlorogenic acid, and syringaresinol in the 70% ethyl alcohol extract of Korean Acanthopanax senticosus, it is suggested that the stems of Korean Acanthopanax senticosus harvested during the winter season are suitable for the development of novel materials with enhanced anti-obesity functionality.

Screening of the total phenol content and analysis of phenolic compound in rice (Oryza saiva L.) genetic resources

  • Lee, Ji-Hee;An, Min-Jeong;Kim, Seung-Hyun;Chung, Ill-Min
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.290-290
    • /
    • 2017
  • Rice (Oryza sativa L.) is one of the most consumed staple food crop which is energy source as carbohydrate and also is considered as the important antioxidant sources including various phenolic compounds. According to the increasing demand of healthy life, the concern to antioxidant also is increasing because of its health-promoting effect. Phenolic compounds are one of the plant secondary metabolites class, which shows various benefits to preventing or treating chronic diseases. In this study, we have measured the total phenol content from total 647 rice samples using the Floin-Ciocalteau method, and then were selected 30 rice genetic resources classified with high, middle, and low group on the basis of total phenol content. The average of the total phenol content of each group was high-group ($6892.9{\pm}488.5{\mu}g\;GAE/g$) > middle-group ($1428.1{\pm}76.0{\mu}g\;GAE/g$) > low-group ($97.6{\pm}11.4{\mu}g\;GAE/g$). The selected rice samples were analyzed with LC-MS/MS to find the composition and concentration of individual phenolic in rice grain. High-group and middle-group contained large amounts of protocatechuic acid and (+)-catechin whereas low-group showed limited amount. Among high-group samples, rice samples with black pericarp color (IT 174089, IT 220079, and IT 259958) had high content of peonidin-3-O-glucoside. Further, these black rice samples were special since polydatin, rarely found stilbenoid in rice grain, was detected. Overall, both the sum of phenolic acid and the sum of flavonoid were high-group > middle-group > low-group. Also, each group exhibited different phenolic compositions; high-group consisted of flavonoid more than phenolic acid, middle-group and low-group was comprised of phenolic acid rather than flavonoid, and non-pigmented rice was composed by fully phenolic acid. The total phenol content had positive relationships with the sum of phenolic compound (r = 0.64), the sum of flavonoid (r = 0.74) at the significance level of p < 0.0001. In addition, protocatechuic acid and quercetin showed positive correlation with above phenolic composition parameters; in order, r = 0.98, 0.65 for protocatechuic acid and r = 0.73, 0.78 for quercetin (p < 0.0001). In conclusion, the total phenol content assay showed the possibility of utilization as a phenolic composition indicator in rice grain. Also, this result was suggested study pigment on other material.

  • PDF

Antioxidant and Antihypertensive Activities of Grains Grown in South Korea in Relation to Phenolic Compound and Amino Acid Contents

  • Narae Han;Koan Sik Woo;Jin Young Lee;Jiho Chu;Mihyang Kim;Yu-Young Lee;Moon Seok Kang;Hyun-Joo Kim
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.6
    • /
    • pp.572-580
    • /
    • 2023
  • Hypertension is characterized by excessive renin-angiotensin system activity, leading to blood vessel constriction. Several synthetic compounds have been developed to inhibit renin and angiotensin-converting enzyme (ACE). These drugs often have adverse side effects, driving the exploration of plant protein-derived peptides as alternative or supplementary treatments. This study assessed the phenolic compound and amino acid content and the antioxidant and antihypertensive activity of 5 South Korean staple crops. Sorghum had the highest phenolic compound content and exhibited the highest antioxidant activity. Millet grains, particularly finger millet (38.86%), showed higher antihypertensive activity than red beans (14.42%) and sorghum (17.16%). Finger millet was found to contain a large proportion of branched-chain, aromatic, and sulfur-containing amino acids, which are associated with ACE inhibition. In particular, cysteine content was positively correlated with ACE inhibition in the crops tested (r=0.696, p<0.01). This study confirmed that the amino acid composition was more correlated with the antihypertensive activity of grains than the phenolic compound content. Finger millet mainly contained amino acids, which have higher ACE inhibitory activity, resulting in the strongest antihypertensive activity. These findings underscore the antihypertensive potential of select crops as plant-based food ingredients, offering insight into their biological functions.

Phenolic Compounds Production, Enhancement and Its Antioxidant Activity of Blue Berry Powder with Bacillus subtilis Light Mediated Fermentation Compounds

  • Elumalai, Punniyakotti;Lim, Jeong-Muk;Mohan, Harshavardhan;Lee, Jeong-Ho;Oh, Byung-Taek
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.66-66
    • /
    • 2018
  • Light fermentation has been conducted under different light conditions such as normal dark light, white light, and light emitting diodes (LEDs) various color (blue, green, red, white on blueberry powder with fermenting bacteria Bacillus subtilis (B2). The bacteria B2 was isolated and identified by 16S rRNA sequencing method. RYRP biologically converted to secondary metabolites through light fermentation in the presence of Bacillus subtilis, the bacteria actively involved in bioconversion process. LEDs fermentation to enhance the production of phenolic content while comparing to normal dark and white light. Among the different color LEDs, blue LEDs mediated fermentation showed higher amount of total phenolic and flavonoid content. Then blue LEDs mediated fermented compound were characterized by FTIR and GC-MS, subsequently the compound was analyzed antioxidant activity tests and the antioxidant activity exhibited higher. This is the first study to demonstrate that B. subtilis-LEDs mediated fermentation is useful for facilitating phenolic compound production and enhancing antioxidant activity, which may have greater application fermentation fields.

  • PDF

Evaluation of antimicrobial activity and total phenolic content of three Pinus species

  • Kim, Hyeusoo;Lee, Byongsoon;Yun, Kyeong Won
    • Journal of Ecology and Environment
    • /
    • v.36 no.1
    • /
    • pp.57-63
    • /
    • 2013
  • This study compared the antimicrobial activity and total phenolic content of three Pinus plants (Pinus densiflora, P. thunbergii, P. rigida) for the first time. The antimicrobial activity of the water fraction of methanol extract of fresh leaves was stronger than that of fallen leaves at any concentrations. The water fraction of crude methanol extract from fresh leaves of P. thunbergii showed a higher growth inhibitory activity against gram-positive and gram-negative bacteria than that of P. densiflora and P. rigida. The results from the disc diffusion method followed by measurements of minimal inhibition concentration (MIC) indicate that Bacillus subtilis was the most sensitive microorganism with the lowest MIC value. The highest total phenolic content was found in fresh leaves of P. rigida and P. thunbergii. The assay showed that the fresh leaves of the three Pinus plants contained higher total phenolic content than fallen leaves of the three plants. The antimicrobial activity was related with the total phenolic content.