• Title/Summary/Keyword: Phenol-formaldehyde resin

Search Result 90, Processing Time 0.024 seconds

Preparation of Cation-exchange Resin from Lignin

  • Kamelt S.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.5 s.108
    • /
    • pp.78-84
    • /
    • 2004
  • Lignin precipitated from black liquor of soda pulping of bagasse was used to prepare cation-exchange resin. The effect of sulfuric acid treatment, concentration of phenol and formaldehyde on the properties of the prepared cation-exchange resin was investigated. It was found that sulfonated resinified phenolated lignin gave a resin with an ion-exchange capacity higher than that of resin, which resulted from sulfonation of resinified lignin at zero phenol concentration. Infrared spectroscopy of the prepared ion-exchange resin shows anew bands at 1060, 1160, 1280 and $1330\;cm^{-1}$ which indicated to the presence of $SO_{3}$.

Synthesis of Dodecyl Phenol Novolac Epoxy Resin and Physical Properties of Coatings (Dodecyl phenol novolac 에폭시수지의 합성과 도막물성)

  • Lee, Dong-Chan;Kim, Jin-Wook;Choi, Joong-So
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.615-626
    • /
    • 2016
  • In the paper, mild solvent soluble alkyl group modified epoxy resins were prepared via a three-step method; (1) the condensation reaction of dodecyl phenol (DP) and formaldehyde, (2) the crosslinking reaction of dodecyl phnol novolac compound (DPC) and bisphenol A diglycidyl ether, (3) the dodecyl phenol novolac epoxy resins containing fatty acid (DPFA) was prepared by introducing fatty acid to DPC. Equivalent ratios of DP and formaldehyde were 1.25~1.333/1.0. Equivalent ratio of DPC and bisphenol A diglycidyl ether (YD-128) was 1.0/2.0. Reactivity, viscosity, molecular weight, solvent solubility, and physical properties of DPFA were investigated. The result show that as the number of aromatic ring of DPFA increased, viscosity increased and solvent solubility improved. When we test the properties of coatings by blending the synthesized DPFA with a white pigment, DPFAC-5 using triphenylphosphine (TPP) as a ring-open catalyst showed optical performance for drying time, adhesion, hardness, impact resistance, acid resistance and storage stability.

Effect of Filler Types on Phenol-Formaldehyde Resin Adhesive for Plywood (충전제의 종류가 합판용 페놀수지 접착제에 미치는 효과)

  • Oh, Yong-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.48-52
    • /
    • 1998
  • Residues such as walnut, pinenut and peanut shells were used as a filler in adhesive for bonding radiata pine plywood. The nutshell residues were prepared by simply drying to 8% moisture content and grinding the dry material using a laboratory Wiley mill with a $75{\mu}m$ (200 mesh) screen. The nutshells residues were compared to a commercial filler commonly used in adhesives by the structural plywood and laminated veneer lumber industry in the United States. The adhesive mixes were made by following the recommended procedure of Georgia-Pacific Resins, Inc., using phenol-formaldehyde resin. For each filler type, three-ply plywoods, 6 mm nominal thickness and 30 by 30 cm in size, were fabricated at two press times (4 and 5 min) and around 30 minute assembly time. Evaluations of the nutshell residues were carried out by tension shear tests after cyclic boil tests on plywood. The results of the performance test included tension shear strength and wood failure. All plywoods made with the nutshell fillers were comparable to those made with the control filler. These results indicate that nutshell residues would be suitable as filler for plywood adhesives.

  • PDF

Treatment of Phenolic Resin Wasterwater by Candida tropicalis PW-51 (Candida tropicalis PW-51을 이용한 페놀수지 폐수의 처리)

  • 김성빈;김희식;오희목;윤병대;김치경
    • Korean Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.237-241
    • /
    • 1999
  • Phenolic resin wastewater contained 41,000 mglI phenol, 2,800 mg/l fonualdehyde and various chlorinated phenolic compounds. Candida tropicalis PW-51 isolated [rom the natural enVlfooment was able to degrade 1,000 mg/l phenol in the presence of 100 mglI formaldehyde, but it took much time to degrade phenol with the increase of formaldehyde in phenolic resin wastewater. %en the phenolic resin wastewater was diluted to 1/40, the initial concentration of phenolic compounds (phenols) was 882 mglI and degraded to 81 mglI by C tfVpicalis PW-51 in batch culture. In a continuous biological treatment, the phenolic resin wastewater was diluted to 40 (745 mglI), 20 (1,356 mglI), or 10 (2,875 mglI) times. The removal efficiency of phenols in 1/40- and lI20-diluted phenolic resin wastewater was about 92%, but the phenols in 1!1O-diluted wastewater were not degraded. The remained phenols in wastewater were absorbed by a mixture of activated carbon and rice bran (1:1, v:v) in the process of absorption which was connected to the biological treatment. The total removal efficiency of phenols in 1!40~ and l/20-diluted phenolic resin wastewater was 99.9%.

  • PDF

On the Extending for the Plywood Glue by Bark Powder of Persimmon Tree and Chestnut Tree (감나무와 밤나무 수피(樹皮)를 이용(利用)한 합판(合板) 접착증량(接着增量)에 관(關)한 연구(硏究))

  • Suh, Jin-Suk;Doh, Geum-Hyun;Jo, Jae-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.17-21
    • /
    • 1988
  • In order to investigate the extending effects on urea-formaldehyde resin- or phenol- formal- dehyde resin- glued keruing plywood, hot pressing temperatures were controlled to 110, 140, 170 and $200^{\circ}C$. As the extender, wheat flour, persimmon bark powder, chestnut bark powder, the equivalently- extended with the above three powders, and diatomite powder were respectively mixed with 5, 10, 15 and 20% ratios to the resin liquid, and also with these the no- extended was allowed. Based on the measured bonding strength, the conclusions were drawn: 1. In the urea- formaldehyde resin, extending effects on the bonding strength were in the order of wheat flour, the equivalently- extended with the wheat flour, persimmon- and chestnut bark powder, persimmon bark powder, chestnut bark powder. In the phenol- formaldehyde resin, the effects in the order of wheat flour, persimmon bark powder, diatomite powder, chestnut bark powder were resulted in. Specifically, superior bonding strength to the no-extended were given with the wheat flour and persimmon bark powder. 2. On the whole, the bonding strength decreased gradually, as the hot pressing temperature increased except for the diatomite powder extending.

  • PDF

Effect of Phenol Formaldehyde Impregnation on The Physical and Mechanical Properties of Soft-Inner Part of Oil Palm Trunk

  • Hartono, Rudi;Hidayat, Wahyu;Wahyudi, Imam;Febrianto, Fauzi;Dwianto, Wahyu;Jang, Jae-Hyuk;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.842-851
    • /
    • 2016
  • The objective of this study was to improve physical and mechanical properties of soft-inner part of oil palm trunk (S-OPT) after impregnation with phenol formaldehyde (PF) resin and densification by close system compression (CSC) method. Effect of different methods of PF resin impregnation (i.e., no vacuum-pressure, vacuum, and vacuum-pressure) was evaluated. The results showed that PF resin impregnation and CSC significantly improved the physical and mechanical properties of S-OPT up to: (1) 176% in density; (2) 309% in modulus of rupture (MOR); (3) 287% modulus of elasticity (MOE); and (4) 191% in the compressive strength. Physical and mechanical properties of S-OPT showed their best performances when PF resin impregnated with vacuum-pressure method as shown by higher weight gain, density, MOR, MOE, compressive strength, and lower recovery of set due to better penetration of PF resin into S-OPT. Combining PF resin impregnation and densification by CSC method could be a good method to improve physical and mechanical properties of S-OPT.

Crosslinking Density Control and Its Carbonization Characteristics of Spherical Phenolic Resin Particles by Using Cresol as Comonomer (구형 페놀수지 입자의 크레졸을 이용한 가교조절 및 탄화물성 변화)

  • Hahn, Dongseok;Kim, Hongkyeong
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.618-623
    • /
    • 2020
  • Spherical phenolic resin beads were synthesized by suspension polymerization at 98 ℃ from phenol, ortho-cresol, formaldehyde, with triethylamine as a basic catalyst, and spherical phenol-cresol copolymer resin beads with relatively low crosslinking density as well. Phenol reacts with formaldehyde at two ortho- and one para- positions to form a crosslinked structure, but ortho-cresol instead of phenol reduces the crosslinking density during copolymerization due to the methyl group at a ortho- position. As a result, spherical phenol-cresol copolymer beads showed more shrinkage with decreasing apparent density compared to the spherical phenol beads when carbonized at 700 ℃ under nitrogen. As the molecular weight of the cresol oligomer increases, the pore radius of the carbonized copolymer beads decreases, which is consistent with the density and shrinkage results. It was confirmed that the characteristics such as density decrease, shrinkage, yield and so on during carbonization can be controlled by controlling the degree of crosslinking of the spherical phenolic resin particles with cresol.

Bonding Performance of Adhesives with Lamina in Structural Glulam Manufactured by High Frequency Heating System

  • Kim, Keon-Ho;Kim, Se-Jong;Yang, Sang-Yun;Yeo, Hwanmyeong;Eom, Chang-Deuk;Shim, Kugbo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.682-690
    • /
    • 2015
  • The bonding performance of two types of wood adhesives, namely phenol-resorcinol-formaldehyde (PRF) resin and melamine-urea-formaldehyde (MUF) resin for glued laminated timber manufactured by high frequency (HF) heating was evaluated. The HF heating system consists of HF oscillator with dielectric heating system for curing adhesives, and hydraulic press system for clamping glued laminated timber. The designed frequency and output power of the HF system was as 5 MHz and 60 kW, respectively. To verify dielectric heating mechanism under HF oscillation, the heat loss factors of laminae and adhesives were measured. The results show that it is possible to selectively heat adhesives for their curing due to the remarkably higher loss factor of the adhesives than those of wood laminae. The temperature of adhesive in the bonding line reached up to the set temperature within a few seconds by high frequency oscillating, which advanced the curing of adhesive afterwards. The bonding performance, such as shear strength of bonding line, water soaking delamination, and boiling water soaking delamination of PRF resin met the requirement of Korean Standard (KS), however the MUF resin did not meet the KS requirement of boiling water soaking delamination. These results indicate that the HF heating system is successful to manufacture glued laminated timbers with PRF resins to meet the bonding requirements.

Quality Enhancement of Falcataria-Wood through Impregnation

  • SUMARDI, Ihak;DARWIS, Atmawi;SAAD, Sahriyanti;ROFII, Muhammad Navis
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.722-731
    • /
    • 2020
  • The purpose of this research is to determine the efficiency of impregnation using phenol formaldehyde resin to enhance Falcataria wood's stability and better mechanical properties. Impregnation process was carried out after moisture content stabilized at 12% on samples with a dimension of 20 mm × 20 mm × 300 mm at various concentrations and pressure time. Dimensional stability was evaluated by thickness swelling (TS) and anti-swelling efficiency (ASE) and the young's modulus was conducted according to BS 573. The mechanical properties and dimensional stability of impregnated wood were evaluated. Dimensional stability and mechanical properties of Falcataria wood were successfully increased after impregnation. PF impregnation can improve the mechanical properties and the density from 0.26 g/㎤ to 0.30 g/㎤ even with only 10% of weight percent grain. Dimensional stability increases with increasing resin concentration and time pressure. The highest increase in mechanical properties was found at a higher concentration of PF. The penetration of PF into the wood's cell darkens the color of impregnated wood.

Phenol/formaldehyde-derived macroporous carbon foams prepared with aprotic ionic liquid as liquid template

  • Byun, Hae-Bong;Nam, Gi-Min;Rhym, Young-Mok;Shim, Sang-Eun
    • Carbon letters
    • /
    • v.13 no.2
    • /
    • pp.94-98
    • /
    • 2012
  • Herein, macroporous carbon foams were successfully prepared with phenol and formaldehyde as carbon precursors and an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ($BMIPF_6$), as a pore generator by employing a polymerization-induced phase separation method. During the polycondensation reaction of phenol and formaldehyde, $BMIPF_6$ forms a clustered structure which in turn yields macropores upon carbonization. The morphology, pore structure, electrical conductivity of carbon foams were investigated in terms of the amount of the ionic liquid. The as-prepared macroporous carbon foams had around 100-150 ${\mu}m$-sized pores. More importantly, the electrical conductivity of the carbon foams was linearly improved by the addition of $BMIPF_6$. To the best of the author's knowledge, this is the first result reporting the possibility of the use of an ionic liquid to prepare porous carbon materials.