• Title/Summary/Keyword: Phenol resin

Search Result 248, Processing Time 0.023 seconds

Fast-Curing of Phenol·Formaldehyde Resin Adhesives for Plywood (합판용 페놀수지 접착제의 속경화)

  • Roh, Jeang-Kwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.33-39
    • /
    • 1995
  • To accelerate the cure of phenolic resin adhesives for plywood, the complexation with melamine resin and the addition of cure-accelerating agents were discussed. The hot-pressing temperature and time of phenol resin could be decreased by complexation with melamine resin. but the wet glue-joints strength of phenol melamine resin was lower than that of ordinary phenol resin in case of plywood using spruce veneer at core layer. Among the tested cure-accelerating agents. the sodium carbonate showed the greatest effect on shortening gelation time of phenolic resin. In addition, in the manufacturing scale test, the hot-pressing time of phenol resin with the addition of 5 parts sodium carbonate could be shortened about 20% compared with ordinary phenol resin which had same glue-joints properties.

  • PDF

1-D Microstructure Evolution of Electrostatic Sprayed Thermosetting Phenol-formaldehyde Resin Coating (정전분무법으로 제작된 열경화성 Phenol-formaldehyde resin 코팅층의 1차원적 미세구조 형성 메카니즘)

  • Kim, Baek Hyun;Bae, Hyun Jeong;Goh, Yumin;Kwon, Do-Kyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.9
    • /
    • pp.472-477
    • /
    • 2016
  • Microstructure evolutions of thermosetting resin coating layers fabricated by electrostatic spray deposition (ESD) at various processing conditions were investigated. Two different typical polymer systems, a thermosetting phenol-formaldehyde resin and a thermoplastic polyvinylpyrrolidone (PVP), were employed for a comparative study. Precursor solutions of the phenol-formaldehyde resin and of the PVP were electro-sprayed on heated silicon substrates. Fundamental differences in the thermomechanical properties of the polymers resulted in distinct ways of microstructure evolution of the electro-sprayed polymer films. For the thermosetting polymer, phenol-formaldehyde resin, vertically aligned micro-rod structures developed when it was deposited by ESD under controlled processing conditions. Through extensive microstructure and thermal analyses, it was found that the vertically aligned micro-rod structures of phenol-formaldehyde resin were formed as a result of the rheological behavior of the thermosetting phenol-formaldehyde resin and the preferential landing phenomenon of the ESD method.

Synthesis of an Environmentally Friendly Phenol-Free Resin for Printing Ink

  • Ha, Young-Baeck;Jin, Ming Yu;Oh, Sung-Sang;Ryu, Do-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3413-3416
    • /
    • 2012
  • Phenol-free resin was synthesized and its printing ink properties were investigated. The phenol-free resin was produced by esterification of poly phthalate and Diels-Alder adduct of rosin anhydride. Compared to rosin modified phenolic resin, eco-friendly phenol-free resin showed better vehicle properties in terms of gloss, yellowing, runability, and storage stability. The results suggest the utility of phenol-free resin instead of conventional rosin modified phenolic resin.

Properties and structure of Li-doped carbonized phenol resin electrode (Li-doped 탄화된 페놀레진 전극의 성질과 구조)

  • Kim, Han-Joo;Park, Jong-Eun;Lee, Hong-Ki;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.965-967
    • /
    • 1999
  • In order to solve to instability in air and to format dentrite, we used carbonized phenol resin electrode which is amorphous carbon. The structure and properties of deeply Li-doped carbonized phenol resin have been investigated in association with their utilization as electrodes in rechargeable batteries. Resol type phenol resin used as starting material. The doped lithium was found neither in metallic nor in ionic states even in the most deeply doped state($C_{2.2}$Li stage). It has also been confirmed that the carbonized phenol resin electrode has a large capacity with good stability and reversibility. These results strongly suggest that the carbonized phenol resin can make an excellent anode material for secondary batteries. Finally, we discuss that the carbonized phenol resin doped up to the $C_2Li$ stage can exhibit an energy density per volume as high as lithium metal. We know that carbonized phenol resin can used as cathode as well as anode by cyclic voltammogram.

  • PDF

Synthesis and Bonding Properties of Phenol·Resorcinol·Formaldehyde Resin Adhesives (페놀·레조르시놀 수지의 합성과 접착성능)

  • Roh, Jeang-Kwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.51-58
    • /
    • 1993
  • The phenol resorcinol formaldehyde resin (PRF) adhesives which are curing at ambient temperature for structural purposes were synthesized. A PRF resin is produced according to the two-stage reaction system. In first stage, a low-condensed resol or methylolated phenol were prepared from phenol by reaction with a formaldehyde in alkaline condition. The molar ratio of phenol to formaldehyde was 1.0~1.4. And in second-stage, resorcinol was added to combine with the methylol group of a low-condensed resol(R/P molar ratio 0.3). The glue-joint strength, pot-life and workability of this synthetic PRF resin were superior to conventional ambient temperature setting adhesives such as oilic urethane or water based polymer-isocyanate resin for wood adhesives.

  • PDF

Recycling of Carbon Particle from Phenol Resin Waste using Supercritical Fluid (초임계 유체를 이용한 폐페놀수지로부터 카본입자 재활용 연구)

  • Cho, Hang-Kyu;Lim, Jong Sung
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.220-224
    • /
    • 2017
  • In this study, we investigated a new recycling method of phenol resin, which is widely used to make electric insulation boards and adhesives, into carbon particles by using supercritical fluids. Because phenol resin is insoluble and infusible, most of the phenol resin wastes are buried in the ground or incinerated, which leads to environmental pollution. Therefore, development of a new method to recycle phenol resin waste is an urgent issue. In this study, phenol resin waste was treated with four sub/supercritical solvents: ethanol, acetone, water, and methanol. For all the sub/supercritical solvents, the phenol resin wastes were broken down into carbon nano particles at much lower temperatures than that required in the existing carbon particle manufacturing processes. We investigated the difference of morphologies and physical properties of recycled carbon particles according to the use of various solvents. As a result, carbon nano particles with the same amorphous structure were obtained from phenol resin waste with the usage of various sub/supercritical solvents at much lower temperature.

Utilization of Kraft Black Liquor as Resin Binders (접착제(接着劑)로서 크라프트 리그닌 폐액(廢液)의 이용(利用))

  • Park, Kwang-Man;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 1987
  • A kraft black liquor obtained from pulping of pine (Pinus densiflora Sieb et Zucc) was used for producing three kinds of adhesive such as black liquor-phenol formaldehyde resin, methyloeated kraft lignin-phenol formaldehyde resin, and lignin cake-phenol resin. In case of producing black liquor-phenol formaldehyde resin, about 60 percent of the phenolic resin could be replaced by black liquor. Also the optimal press condition appeared to be $160^{\circ}C$ for 7 min. (l5.77Kg/$cm^2$ in dry test, 8.54Kg/$cm^2$ in 4 hr. boil test). Phenol could be substituted up to 80-90 percent by methylolated kraft lignin. The suitable conditions of factors affecting bond quality were pH to 2.6, methanol as solvent and 0.2ml formaldehyde per 1g of the adhesives, respectively. The optimal press condition was $150^{\circ}C$ for 4 min. (188.54Kg/$cm^2$ in dry test, 10.08Kg/$cm^2$ in 4 hr. boil test). In preparing lignin cake-phenol resin, a suitable mixing ratio of phenol to powered kraft lignin was one to one by weight. The optimal press condition was $150^{\circ}C$ for 4 min.(18.46Kg/$cm^2$ in dry test, 12.31Kg/$cm^2$ in 4 hr. hoil test).

  • PDF

Effects of Urea-Phenol-Melamine Copolymer Adhesive on the Plywood Qualities (요소(尿素)·멜라민·페놀공축합수지(共縮合樹脂)가 합판(合板)의 재질(材質)에 미치는 영향(影響))

  • Lee, Hwa-Hyoung;Hong, Seung-Do
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.38-43
    • /
    • 1984
  • Water soluble urea-melamine-phenol copolymer adhesive manufactured with 80 percent of urea resin contents was manufactured by different molar ratio for a high temperature curing type, and their properties and strengthes were examined through manufactures of plywood with Kapur (Dryobalanops spp.) veneers. The results are summarized as follows: 1. Specific gravities of air dried plywood manufactured from each adhesive ranged from 0.78 to 0.84 and their moisture contents met the KS requirement. 2. In dry and wet shear strength, $U_{80}M_{10}P_{10}$ copolymer resin showed the highest value and urea resin was the lowest, indicating that melamine and phenol were effective for increasing glue shear strength of urea resin. 3. In case of glue shear strength after boiling test, phenolic resin was the nest and melamine was not so effective as phenol on reinforcement of boiling water resistance of urea resin.

  • PDF

Preparation and Characterization of Carbon/Phenol Composite by RTM Process (RTM 공정에 의한 탄소/페놀 복합재료의 제조 및 특성 분석)

  • Jin, Da Young;Lee, Hyun Jae;Lim, Sung Chan;Kim, Yun Chul;Yun, Nam Gyun;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.28 no.4
    • /
    • pp.239-245
    • /
    • 2016
  • In this study, carbon/phenol composites were prepared from carbon fiber preform and phenol resin by RTM(resin transfer molding) process. And changes in the properties of the composite according to the pre-treatment of phenol resin was mainly studied. RTM process conditions were deduced from viscosity and thermal analysis of phenol resin which were rheometer and thermogravimetric analyzer(TGA). RTM process was performed under various injection and molding temperature. Characterization of the prepared C/P composites were evaluated by various analysis. Morphology of composites was analyzed by Micro-CT(MCT), Mechanical properties of composites were measured through the flexural properties. As results, volatile impurities of phenol resin were effectively removed at resin pre-treatment temperature of $100^{\circ}C$ and composite was sufficiently cured at molding temperature of $180^{\circ}C$.

Study on the Development of friction Material Using I-glass Fiber Reinforced Composites (유리섬유 강화 복합재료를 이용한 마찰재 개발에 관한 연구)

  • 김영운;최문호;서상하;김부안;문창권
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.49-55
    • /
    • 2000
  • This study has been investigated to apply fiber reinforced composites instead of asbestos as a friction material. the reinforced used was E-glass fiber and binder resin was phenol having good mechanical properties and heat resistance. And it has been also investigated the effect of molding conditions and some additives such and carbon black, alumina and rubber powder in E-glass fiber/phenol resin composite on the friction on the friction and wear characteristics. As a result, it was found that the molding conditions of E-glass fiber/phenol resin composites for friction materials had to be different from those of phenol resin and was found that the wear rate of E-glass fiber/phenol resin composites added alumina powder was higher than of composites added carbon black in the same wear distance. And it was found that friction coefficient of E-glass/phenol resin composites added carbon black was decreased and that of the composites added the powder of natural rubber and ABS rubber were increased compared to the composites.

  • PDF