Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.9.472

1-D Microstructure Evolution of Electrostatic Sprayed Thermosetting Phenol-formaldehyde Resin Coating  

Kim, Baek Hyun (Department of Materials Engineering, Korea Aerospace University)
Bae, Hyun Jeong (Department of Materials Engineering, Korea Aerospace University)
Goh, Yumin (Department of Materials Engineering, Korea Aerospace University)
Kwon, Do-Kyun (Department of Materials Engineering, Korea Aerospace University)
Publication Information
Korean Journal of Materials Research / v.26, no.9, 2016 , pp. 472-477 More about this Journal
Abstract
Microstructure evolutions of thermosetting resin coating layers fabricated by electrostatic spray deposition (ESD) at various processing conditions were investigated. Two different typical polymer systems, a thermosetting phenol-formaldehyde resin and a thermoplastic polyvinylpyrrolidone (PVP), were employed for a comparative study. Precursor solutions of the phenol-formaldehyde resin and of the PVP were electro-sprayed on heated silicon substrates. Fundamental differences in the thermomechanical properties of the polymers resulted in distinct ways of microstructure evolution of the electro-sprayed polymer films. For the thermosetting polymer, phenol-formaldehyde resin, vertically aligned micro-rod structures developed when it was deposited by ESD under controlled processing conditions. Through extensive microstructure and thermal analyses, it was found that the vertically aligned micro-rod structures of phenol-formaldehyde resin were formed as a result of the rheological behavior of the thermosetting phenol-formaldehyde resin and the preferential landing phenomenon of the ESD method.
Keywords
phenol-formaldehyde resin; electrostatic spray deposition; aligned structure; DSC;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. H. Baekeland, US Patent 942699 (1909).
2 L. Pilato, Phenolic Resins: A Century of Progress, p.155, Springer, Berlin (2010).
3 L. Pilato, React. Funct. Polym., 73, 270 (2013).   DOI
4 F. Hshieh and H. D. Beeson, Fire Mater., 21, 41 (1997).   DOI
5 B. K. Kandola, L. Krishnan, D. Deli, P. Luangtriratana and J. R. Ebdon, RSC Adv., 5, 33772 (2015).   DOI
6 E. Fitzer, W. Schafer and S. Yamada, Carbon, 7, 643 (1969).   DOI
7 H. O. Pierson, Handbook of carbon, diamond and fullerenes, p.122, Noyes, Park Ridge, NY (1993).
8 S. S. Tzeng and Y. G. Chr, Mater. Chem. Phys., 73, 162 (2002).   DOI
9 S. Xu, Y. Luo, and W. Zhong, Sol. Energy, 85, 2826 (2011).   DOI
10 A. Jaworek and A. T. Sobczyk, J. Electrost., 66, 197 (2008).   DOI
11 C. Chen, E. M. Kelder, P. J. J. M. Van der Put, J. Schoonman, J. Mater. Chem., 6, 765 (1996).   DOI
12 R. Neagu, D. Perednis, A. Princivalle and E. Djurado, Chem. Mater., 17, 902 (2005).   DOI
13 S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim and Z. Ma, An introduction to electrospinning and nanofibers, World Scientific Publishing Co. Pte. Ltd., Singapore (2005).
14 M. D. P. Buera, G. Levi, M. Karel, Biotechnol. Prog., 8, 144 (1992).   DOI
15 J. C. Dominguez, M. Oliet, M. V. Alonso, E. Rojo and F. Rodriguez, J. Appl. Polym. Sci., 123, 2107 (2012).   DOI
16 W. I. Lee, A. C. Loos and G. S. Springer, J. Compos. Mater., 16, 510 (1982).   DOI