• Title/Summary/Keyword: Phenol compounds

Search Result 513, Processing Time 0.031 seconds

Degradation of Phenol in Water Using Circulation Dielectric Barrier Plasma Reactors (순환식 유전체 장벽 플라즈마 반응기를 이용한 수중 페놀 처리)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.3
    • /
    • pp.251-260
    • /
    • 2012
  • Objectives: The purpose of this study was evaluating the applicability of the circulation dielectric barrier plasma process (DBD) for efficiently treating non-biodegradable wastewater, such as phenol. Methods: The DBD plasma reactor system in this study consisted of a plasma reactor (discharge, ground electrode and quartz dielectric tube, external tube), high voltage source, air supply and reservoir. Effects of the operating parameters on the degradation of phenol and $UV_{254}$ absorbance such as first voltage (60-180 V), oxygen supply rate (0.5-3 l/min), liquid circulation rate (1.5-7 l/min), pH (3.02-11.06) and initial phenol concentration (12.5-100 mg/l) were investigated. Results: Experimental results showed that optimum first voltage, oxygen supply rate, and liquid circulation rate on phenol degradation were 160 V, 1 l/min, and 4.5 l/min, respectively. The removal efficiency of phenol increased with the increase in the initial pH of the phenol solution. To obtain a removal efficiency of phenol and COD of phenol of over 97% (initial phenol concentration, 50.0 mg/l), 15 min and 180 minutes was needed, respectively. Conclusions: It was considered that the absorbance of $UV_{254}$ for phenol degradation can be used as an indirect indicator of change in non-biodegradable organic compounds. Mineralization of the phenol solution may take a relatively longer time than that required for phenol degradation.

Isolation and Characterization of a Phenol-Degrading Strain Acinetobacter sp.GEM2 (Phenol을 분해하는 Acinetobacter sp. GEM2의 분리 및 특성)

  • Lee, Chang-Ho;Oh, Hee-Mock;Kwon, Tae-Jong;Kwon, Gi-Seok;Lee, Sung-Gie;Suh, Hyun-Hyo;Yoon, Byung-Dae
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.692-699
    • /
    • 1994
  • A bacterial strain which formed a distinct colony on agar plate containing phenol as a vapor phase and grew well in a liquid minimal medium was isolated and identified as Acinetobac- ter sp. GEM2. The optimal temperature and initial pH for the growth of Acinetobacter sp. GEM2 were 30$\circ$C and 7.0, respectively. Cell growth was inhibited by phenol at the concentration over 1500 ppm. Cell growth dramatically increased from 10 hours after cultivation and almost showed a stationary phase within 24 hours at which 95% of phenol was concomitantly degraded. Acinetobac- ter sp. GEM2 was capable of growing on aromatic compounds, such as benzoic acid, phenol, m- cresol, o-cresol, P-cresol, catechol, gentisic acid, and toluene, but did not grow on benzene, salicylic acid, p-toluic acid, and p-xylene. By the analysis of catechol dioxygenase, it seemed that catechol was degraded through both meta- and ortho-cleavage pathway. The growth-limiting log P value of Acinetobacter sp. GEM2 on organic solvents was 2.0.

  • PDF

Purification and Identification of Phenol Compounds with Inhibitory Activity on Helicobacter pylori from Rhododendron mucronulatum Flos. Extracts (진달래꽃(Rhododendron mucronulatum Flos.) 추출물로부터 Helicobacter pylori 억제 효과를 가지는 phenol성 물질의 정제 및 동정)

  • Ju, In-Sik;Cho, Young-Je
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1125-1131
    • /
    • 2009
  • The antimicrobial activities of Helicobacter pylori as a functional food source with water and 60% ethanol extracts from Rododendron mucronulatum Turcz. flowers were examined. The total phenol content of 60% ethanol extracts (30.6${\pm}$0.14 mg/g) from Rododendron mucronulatum Turcz. flowers was higher than that of water extracts (23.2${\pm}$0.21 mg/g). The inhibitory activities of Rododendron mucronulatum Turcz. extracts on H. pylori was determined to clear zone of 15 mm in 80% ethanol extracts. Purification of inhibitory compounds was carried out in Sephadex LH-20 and MCI-gel CHP-20 column chromatography using a gradient procedure, with increasing ethanol(0${\rightarrow}$100%) in $H_2O$. The chemical structure of the purified inhibitory compounds of H. pylori was identified to be quercitrin (quercetin-3-O- rhamnopyranoside), myricitrin (myricetin-3-O-rhamnopyranoside), quercetin by FAB-MS, NMR and IR spectra.

Defense Inducer Compounds Up-regulated the Peroxidase, Polyphenol Oxidase, and Total Phenol Activities against Spot Blotch Disease of Wheat

  • Puja Kumari;Chandrashekhar Azad;Ravi Ranjan Kumar;Jyoti Kumari;Kumar Aditya;Amarendra Kumar
    • The Plant Pathology Journal
    • /
    • v.39 no.2
    • /
    • pp.159-170
    • /
    • 2023
  • Spot blotch disease of wheat caused by Bipolaris sorokiniana (Sacc.) Shoem is considered as an economically important disease which affects all the growing stages of wheat crop. Therefore, it is important to search some effective management strategies against the spot blotch pathogen. Some synthetic elicitor compounds (salicylic acid, isonicotinic acid, and chitosan) and nano-particles (silver and aluminum) were tested against the pathogen to observe the change in biochemical activity and defense action of wheat plant against spot blotch disease. All the tested elicitor compounds and nano-particles showed a significant increase in activity of peroxidase, polyphenol oxidase (PPO), and total phenol over control. The highest increase in activity of peroxidase was recorded at 72 h from chitosan at 2 mM and 96 h from silver nano-particle at 100 ppm. Maximum PPO and total phenol activity were recorded from chitosan at 2 mM and silver nano-particle at 100 ppm as compared to pathogen-treated and healthy control. The lowest percent disease index, lowest no. of spots/leaf, and no. of infected leaves/plant were found in silver nano-particle at 100 ppm and chitosan at 2 mM, respectively. The use of defense inducer compounds results in significantly up-regulated enzymatic activity and reduced spot blotch disease. Therefore, chitosan and silver nano-particle could be used as alternative methods for the management of spot blotch disease.

Effect of Super Heated Steam Treatment on Physical Property and Smoke Component of Burley Cut Tobacco (과열증기처리에 의한 Burley종 각초의 물리성 및 연기성분 변화에 관한 연구)

  • 김천석;안기영
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.17 no.2
    • /
    • pp.139-148
    • /
    • 1995
  • This study was carried out to investigate the effects of super heated steam on the physical and chemical changes of burley cut tobacco. Total sugar, total alkaloid, ether extracts, crude ash, total nitrogen and pH for leaf chemical constituents were analyzed. Filling power and fineness index for physical properties, and carbonyl compounds, phenol compounds, amonia, pH, hydrogen cyanide nicotine, carbon monoxide, total volatile base and tar for smoke components were also analyzed. The cut tobacco treated with super heated steam showed significant decrease in total sugar and total alkaloid. The filling power of the sample treated with the super heated steam system was increased abruptly when heated at over 250℃. The fineness index showed similar tendency to that of common toast method. Super heated steam treatment slightly decreased carbonyl compounds, phenol compounds, hydrogen cyanide, nicotine, carbon monoxide and tar in the tobacco. Especially the decrease of ammonia was the most remarkable. The pH of smoke was a little different compared with that in the common toast. The sensory test results showed that, compared to the common conveyer moving system, the tobacco treated with super heated steam system brought out more roasted flavor, lowered impact, irritation, and sting, further improved aftertaste, and lowered bitterness. The super heated steam treatment method used in the studies is expected to give better filling power, mild taste and toasted odor of tobacco than that of the common method for toast treatment. Key words : burley tobacco, super heated steam, expansion, toast.

  • PDF

Phenol-Rich Compounds Sweet Gel: A Statistically More Effective Antibiotic than Cloxacillin Against Pseudomonas Aeruginosa

  • Dashtdar, Mehrab;Dashtdar, Mohammad Reza;Dashtdar, Babak;Khan, Gazala Afreen;Kardi, Karima
    • Journal of Pharmacopuncture
    • /
    • v.19 no.3
    • /
    • pp.246-252
    • /
    • 2016
  • Objectives: The purpose of this study was to obtain a natural antibiotic from Phenol-rich compounds; for the dressing and the treatment of chronic wounds. Methods: The Phenol-rich compound sweet gel was prepared by blending four natural herbal extracts, Acacia catechu (L.F.), Momia (Shilajit), Castanea sativa, and Ephedra sinica stapf, with combination of a sweet gel medium, including honey, maple saps, Phoenix dactylifera L. (date), pomegranate extract and Azadirachta indica gum as a stabilizer. The combinations were screened by using a well-diffusion assay with cloxacillin as a control. Pseudomonas spp. was tested with our novel antimicrobial compound. The zones of inhibition in agar culture were measured for each individual component and for the compound, and the results were compared with those of the control group which had been treated with cloxacillin. Data were expressed as means ${\pm}$ standard deviations. Quantitative analyses were performed using the paired t-test. Results: The antibiotic effect of the Phenol-rich compound sweet gel was statistically shown to be more significant than that of cloxacillin against Pseudomonas aeruginosa (P < 0.05). Conclusion: Our novel approach to fighting the antibiotic resistance of Pseudomonas proved to be successful. The Phenol-rich compound sweet gel was found to be suitable for use as an alternative medicine and bioactive dressing material, for the treatment of patients with various types of wounds, including burns, venous leg ulcers, ulcers of various etiologies, leg ulcers on the feet of diabetic, unhealed graft sampling sites, abscesses, boils, surgical wounds, necrotic process, post-operative and neonatal wound infection, and should be considered as an alternative to the usual methods of cure.

Novel Phenol Sulfotransferase of Klebsiella K-36, Rat Intestinal Bacteria (흰쥐의 장내미생물로부터 분리한 새로운 페놀 설포트란스페라제)

  • Kim, Hyung-Soo;Kim, Dong-Hyun
    • YAKHAK HOEJI
    • /
    • v.36 no.2
    • /
    • pp.167-172
    • /
    • 1992
  • Klebsiella K-36 producing novel sulfotransferase was isolated from rat intestinal flora. The novel sulfotransferase catalyzed the transfer of sulfate group from p-nitrophenylsulfate to phenolic compounds but it did not use PAPS(3'-phosphoadenosine 5'-phosphosulfate) as a donor substrate. The present enzyme was 160 K daltons. Optimal pH was 10. When p-nitrophenyl sulfate was used as a donor substrate, 1-naphthol was the best substrate, followed by phenol, phenanthrol and tyrosine. The apparent Km for phenol using p-nitrophenylsulfate as a donor substrate and that for p-nitrophenylsulfate using phenol as an acceptor substrate were determined to be 0.66 mM and 0.11 mM, respectively.

  • PDF

단일개체군 생물막 반응기를 이용한 페놀폐수의 효율적 처리

  • Park, Geun-Tae;Lee, Jun-Hun;Lee, Hui-Jeong;Choe, Jeong-Sun;Son, Hong-Ju;Lee, Sang-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.520-523
    • /
    • 2000
  • Phenol and other phenolic compounds are common constituents of aqueous effluents from processes such as polymeric resin production, oil refining and cokeing plants. Phenol is a both toxic and lethal of fish at relatively low concentrations e.g. 5-25 mg/L and imparts objectionable tastes to drinking water at far lower concentration. Therefore, the treatment of phenol effluent is important. Among the various techniques of phenol wastewater treatment, microbial teratment is a popular process. The breakdown of phenols by microorganisms has recived considerable attention, because of its biochemical interest and its industrial importance in effluent treatment. This research was performed to investigate the dynamics of microbial community, biofilm growth and the comparison of phenol removal efficiency by RBC (Rotating Biological Contactor) using Rhodococcus sp. EL-GT The experiment was carried out at rotating speed of 10ppm and hydraulic retention time of 7 hours. As time passed, phenol removal efficiency was gained highly. The RBC using Rhodococcus sp. EL-GT completely degraded 15 mM.

  • PDF

Termicidal Activity and Chemical Components of Wood Vinegar from Nipah Fruit against Coptotermes curvignathus

  • ORAMAHI, Hasan Ashari;TINDAON, Mika Jessika;NURHAIDA, Nurhaida;DIBA, Farah;YANT, Hikma
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.315-324
    • /
    • 2022
  • The termicidal activity and chemical components of wood vinegar from two sources of biomass, nipah fruit shells (NFS) and a mixture of shells and fiber (MSF), were evaluated against Coptotermes curvignathus. A no-choice test was carried out to evaluate their termicidal activity using filter paper samples treated with 2.5%, 5.0%, 7.5%, 10.0%, and 12.5% NFS or MSF vinegar. Both wood vinegars exhibited antitermitic activity against C. curvignathus. The results show that increased concentrations of NFS and MSF vinegar significantly increased termite mortality. In particular, the NFS vinegar caused complete mortality and the lowest filter paper mass losses at 2.18% when treated with 12.5% wood vinegar. The most abundant chemical compounds of NFS vinegar were cyclopropanecarbonyl chloride, 2,5-dichlorophenol, 2-propanone, acetic acid, propanoic acid, benzenesulfonic acid, 3,7-dimethyl-6-octenal, and trans-geraniol. Meanwhile, the main compounds in the MSF vinegar were 1,2-ethanediol, formic acid, acetic acid, ethanoic acid, 2-furancarboxaldehyde, phenol, 2-methoxy phenol, and 4-methyl phenol.

Determination of Total Phenol Content and Selected Phenolic Metabolites Analysis of Rice (Oryza sativa L.) Genetic Resources

  • Md Faruk Ahmed;Hee-Sung Moon;Yun-Ju Kim;Seung-Hyun Kim;Ill-Min Chung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2021.04a
    • /
    • pp.137-137
    • /
    • 2021
  • The study of total phenol (TP) content from 700 rice varieties was evaluated using the UV-Vis spectrophotometric method. The calibration curve of serial diluted gallic acid as a standard of this study showed the acceptable performances (R2 = 0.999, mean accuracy 90%) and the mean of % relative standard deviation (%RSD: 0.07%) within the range of 7.8 to 1000 ppm concentrations. The mean value of total phenol content from 700 rice varieties was 2723.15 ㎍/g ranged from 55.48 ㎍/g to 9922.23 ㎍/g and the mean %RSD was 2.5%. Furthermore, this study aim was to analyze and profile individual phenolic compounds in the rice genetic resources to construct an integrative database for development of new rice variety with high functionality for health and understanding of phenolics characteristics in the rice grain. Herein, we analyzed selected 100 rice varieties based on high TP content and identified total 15 phenolic compounds by LC-ESI-MS/MS. Among selected 100 rice genetic resources, the phenolic metabolites consisted of higher amount of flavonoid (catechin) and phenolic acid mainly protocatechuic acid. Further research of more selected rice genetic resources would be continued to provide for an integrative phenolics profile of different rice genetic resources.

  • PDF