• Title/Summary/Keyword: Phases-difference

Search Result 488, Processing Time 0.029 seconds

Relationship between Carrier Concentration and Superconducting Transition Temperature in Bi-Sr-Ca-Cu-O Superconductor

  • Kim, Myung Chul;Park, Soon Ja
    • Analytical Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.223-228
    • /
    • 1992
  • $Bi_2Sr_2Ca_2Cu_3Oy$-based superconductor phases were synthesized by the wet process using acetate precursors. Superconducting transition temperature ($T_c$) was determined from both measurements of electrical resistivity and magnetic susceptibility for the samples which were sintered at the temperatures of $850^{\circ}C$, $860^{\circ}C$, and $870^{\circ}C$ for 40 hours, respectively. The values of carrier concentration from Hall measurements were compared with $T_c$ data as a function of the sintering temperature. The formation mechanism of the superconducting phase was tentatively discussed on a basis of the distribution profile concept of the carrier concentration and the amount of superconducting phases in a ceramic bulk. This explanation may be supported by the experimental results of correlation between the relative amount of superconducting phases and the difference of $T_c$ values between superconducting onset temperature and cutoff temperature at each sintering temperature.

  • PDF

Deep Neck Flexor and Sternocleidomastoid Muscle Thickness Change in Persons with No Current Neck Pain using Rehabilitative Ultrasonograpic Imaging

  • Lee, Hae-Jung;Song, Ju-Min
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.6
    • /
    • pp.349-354
    • /
    • 2016
  • Purpose: The purpose of the study was to investigate the thickness of deep neck flexors (DNF) and sternocleidomastoid muscle (SCM) bilaterally during deep neck flexor endurance test using ultrasonography images. Methods: Healthy volunteers (n=22), 20-25 (mean 22.2) years old, were recruited for the study. Participants were asked to perform the craniocervical flexion test (CCFT) in a seated position to measure deep neck flexor endurance. The thickness of DNF and SCM was assessed bilaterally and was measured using ultrasonography images at resting, contracted, pre-terminal and terminal phases of the neck muscle endurance test. Muscle contraction pattern was also observed along with the changes in muscle thickness from the resting phase to the terminal phase. Repeated-measure ANOVA was employed to compare muscle thickness bilaterally at each phase. Results: The thickness of right and left muscles was found to be significantly different in DNF both at resting and contracted phases (p=0.02, p<0.01, respectively), whereas no significant difference was observed in SCM at resting or contracted phases (p=0.59, p=0.18, respectively). Thickness changes from resting to contracted phase were not significantly different both in DNF and SCM (p=0.18, p=0.22, respectively). Muscle contraction patterns in right and left muscles were shown to be similar. Conclusion: The current study, performed on (with) healthy subjects, significantly detected different right and left muscle thickness in DNF, but the muscle contraction patterns were similar in DNF and SCM bilaterally. Further study is required to investigate DNF and SCM muscle size and function in people with neck pain.

Influencing Factors that Affect the Biological Monitoring of Workers Exposed to N,N-Dimethylformamide in Textile Coating Factories (섬유코팅업종사 근로자에서 디메틸포름아미드의 폭로에 의한 생물학적 모니터링에 영향을 미치는 인자)

  • Chung, In-Sung;Kim, Jong-Ghan;Choi, Sang-Kug;Bae, Jong-Youn;Lee, Mi-Young
    • Journal of Preventive Medicine and Public Health
    • /
    • v.39 no.2
    • /
    • pp.171-176
    • /
    • 2006
  • Objectives : The objective of this study is to assess the factors influencing biological monitoring of textile coating factory workers exposed to N,N-dimethylformamide(DMF). Methods : We studied 35 workers who were occupationally exposed to DMF from 9 textile coating factories. The study was carried out in two phases; summer and winter. While air concentration of DMF, temperature and humidity were assessed in order to monitor the atmospheric conditions, biological monitoring was done to determine the internal dose by analyzing the N-methylformamide(NMF) collected from urine at the beginning and end of the shift. Questionnaires and medical surveillance were also obtained during the two phases. Results : Median air concentrations of DMF in winter and summer were 1.85 ppm and 2.78 ppm respectively. Also the difference between the urinary NMF concentration at the beginning and end of the shift $({\Delta}NMF)$ was always significant in each season (P < 0.001). The correlations between log DMF in air, log end-of-shift urinary NMF (r=0.555, P < 0.001) and log ${\Delta}NMF$ (r = 0.444, P < 0.001) was statistically significant in summer. The temperature, humidity, a shift system and different styles of clothing worn were significantly different during the two phases. In a multivariate analysis, temperature and the concentration of DMF in the air were the main factors influencing biological monitoring of textile coating factory workers. Conclusions : Concerning more comprehensive prevention measures to reduce exposure for those workers occupationally exposed to DMF, dermal exposure conditions such as temperature and humidity together with the air concentration of DMF should be assessed and biological monitoring is necessary to reduce adverse health effects, especially during the summer.

Interfacial Reaction between Spark Plasma Sintered High-entropy Alloys and Cast Aluminum (고엔트로피합금 분말야금재와 알루미늄 주조재 사이의 계면 반응 연구)

  • Kim, Min-Sang;Son, Hansol;Jung, Cha Hee;Han, Juyeon;Kim, Jung Joon;Kim, Young-Do;Choi, Hyunjoo;Kim, Se Hoon
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.213-218
    • /
    • 2022
  • This study investigates the interfacial reaction between powder-metallurgy high-entropy alloys (HEAs) and cast aluminum. HEA pellets are produced by the spark plasma sintering of Al0.5CoCrCu0.5FeNi HEA powder. These sintered pellets are then placed in molten Al, and the phases formed at the interface between the HEA pellets and cast Al are analyzed. First, Kirkendall voids are observed due to the difference in the diffusion rates between the liquid Al and solid HEA phases. In addition, although Co, Fe, and Ni atoms, which have low mixing enthalpies with Al, diffuse toward Al, Cu atoms, which have a high mixing enthalpy with Al, tend to form Al-Cu intermetallic compounds. These results provide guidelines for designing Al matrix composites containing high-entropy phases.

Facture Prediction in SiC Fiber Reinforced $Si_3N_4$ Matrix Composites from Electrical Resistivity Measurements (전기저항측정에 의한 SiC섬유강화 $Si_3N_4$기 복합재료의 파괴예측)

  • Sin, Sun-Gi
    • Korean Journal of Materials Research
    • /
    • v.10 no.5
    • /
    • pp.364-368
    • /
    • 2000
  • SiC fiber reinforced $Si_3N_4$ matrix composites combined with electrical conductive phases of carbon fiber and WC powder fabricated by hot pressing at 1773K. The ability to predict fracture in the ceramic matrix composites was evaluated by measuring simultaneous load-deflection and electrical resistanc difference-deflection curves in four point bending tests. The changes in electrical resistance differences closely corresponded to the fracture behavior of the composites. Different electrical conductive phases are suited to predicting different stages and rates of fracture. These obsevations how that it is possible to perform "in situ" fracture detection in ceramic composites.

  • PDF

Characteristics and Model for Growth of Rhizopus oryzae on the Simulated Gas-solid Interface

  • Jia, Shiru;Kong, Rixiang;Dong, Huijun;Kwun, Kyu-Hyuk;Kim, Sun-Il;Cho, Ki-An;Choi, Du Bok
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.4
    • /
    • pp.494-500
    • /
    • 2004
  • In order to investigate the effect on morphology of Rhizopus oryzae and production of lactic acid, various interface materials were used. Morphology of fungal showed sheet and flock when resin was added. The production of lactic acid was increased dramatically when interface materials were added. Furthermore, the effect of resin was more significant than that of others. It was assumed that interface materials could absorb substrate and microorganism together, so microorganism was not inhibited by substrate. The effect of static electric field on the interface culture was studied. When the exerting potential was 6.78 voltage, the biomass y was obviously higher than that of zero voltage. A simulated gas-solid interface system was developed to study the growth and two phases model for the growth of Rhizopus oryzae was build up that depended on the symmetric branching theory. An important parameter F was researched. The results indicated that the value of F had obvious difference at exponential and deceleration period, respectively.

Characteristics of Vertical Acceleration at Center of Mass of the Body in Normal Gait (정상보행시 체중심의 수직 가속도 특성)

  • Yi, Jin-Bock;Kang, Sung-Jae;Kim, Young-Ho
    • Physical Therapy Korea
    • /
    • v.9 no.3
    • /
    • pp.39-46
    • /
    • 2002
  • In this study, vertical acceleration of center of mass was observed along normal gait phases in 9 healthy male volunteers (aged $25.7{\pm}2.18$). The developed wireless accelerometric device was attached on the intervertebral space between L3 and L4 using a semi-elastic waist belt. A three-dimensional motion analysis system, synchronized with the accelerometry, was used for detecting gait phases. There was no significant correlation between the body weight and the acceleration. The first peak curve covered loading response phase. The second downward peak point was matched accurately with the opposite toe-off. In mid-stance and terminal stance, the acceleration curve highly resembled the vertical ground reaction force curve. There was no significant difference in timing between the final upward peak point and the initial contact. Therefore, the developed accelerometry system would be helpful in determining determine temporal gait pattems in patients with gait disorders.

  • PDF

Joining of Silicon Nitride to Carbon Steel using an Active Metal Alloys (활성 납재를 이용한 질화규소/탄소강 접합)

  • Choe, Yeong-Min;Jeong, Byeong-Hun;Lee, Jae-Do
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.199-204
    • /
    • 1999
  • As the engine design change to get high efficiency and performance of commercial diesel engine, surface wear of the cam follower becomes an important issues as applied load increasing at the contact face between cam follower and cam. Purpose of this study is the developing of the ceramic cam follower made of silicon nitride ceramic which is more wear resistant than the cast iron and sintered cam follower. Ceramic cam follower was made by direct brazing of thin ceramic disk to steel can follower body using active bracing alloy. Effect of joining condition on the interfacial phases and joining strength wer examined at bvarious joining temperatures, times, and cooling rates. Crowning resulted from the difference of thermal expansion coefficient after direct brazing without using any stress-relieving inter layer was measured. Interfacial phases are mainly titanium silicide and titanium nitride which are the products between active metal(Ti) in brazing alloy and silicon nitiride. Maximum joining strength of the ceramic metal joint, measured by DBS method, was 334MPa. Crowning(R) of the prototype ceramic cam follower was 1595mm. As machining for crowning is not necessary, production cost can be reduced.

  • PDF

Estimation of Frequency Offset in TDMA-Based Satellite Systems (시분할 다중접속 방식의 위성통신 시스템을 위한 주파수 추정)

  • Kim Jong-Moon;Lee Yong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.364-370
    • /
    • 2006
  • It is required for correct signal detection to accurately maintain the synchronization of frequency and timing in a TDMA system. In this paper, we consider nondecision-aided estimation of frequency offset for the transmission of QPSK signal in a TDMA-based satellite system. The proposed scheme estimates the phases of two parts in the burst and then estimates the frequency offset based on the difference between the two estimated phases. Thus, it can provides performance comparable to that of conventional schemes, while significantly reducing the implementation complexity, The performance of the proposed scheme is analyzed and verified by computer simulation, when applied to a GSM based geostationary earth orbit mobile radio(GMR) system.

Scan Time Analysis Using 4D Phase-Contrast MRI According to Scan Parameter: A Phantom Study (스캔 인자에 따른 4D 위상 대조 자기공명영상을 이용한 스캔 시간 분석: 팬텀 연구)

  • Park, Jieun;Kim, Junghun;Hwang, Moonjung;Lee, Jongmin
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.179-184
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the effect according to the NEX, VENC, targeted cardiac phases on the velocity measurement of 4D phase-contrast MRI. Materials and Methods: The abdominal aortic phantom was made to experiment. The working fluid was mixed with water and glycerin to mimic the density and viscosity of human blood. The inlet velocity was Reynolds number 2000. The experimental conditions were NEX 1 and 4, VENC 102 cm/s and 200 cm/s, and 10 and 15 targeted cardiac phases, respectively. The average flow rate, average velocity, maximum velocity, and cross-section area were measured. Results: As a result of the case-by-case comparison, the error rate was less than 5%. There was no significant difference (p > 0.05). Conclusion: It is expected that this result will be useful for acquiring blood flow information in clinical practice.