• Title/Summary/Keyword: PhaseField

Search Result 3,229, Processing Time 0.029 seconds

Phase Transition Behaviors of Lead-Free Piezoelectric (Na1/2Bi1/2TiO3)(1-x)-(BaTiO3)x (납이 포함되지 않은 압전 특성의 (Na1/2Bi1/2TiO3)(1-x)-(BaTiO3)x 상전이 거동 연구)

  • Lee, Byoungwan;Luo, Haosu;Kim, Jung Kyu
    • Ceramist
    • /
    • v.23 no.1
    • /
    • pp.101-109
    • /
    • 2020
  • In this study, the phase transition behaviors of lead-free (Na1/2Bi1/2TiO3)(1-x)-(BaTiO3)x (NBT-BT) are investigated by using Brillouin spectroscopy. The elastic properties, sound velocity and absorption coefficient of NBT-BT are characterized as a function of temperature along different crystallographic axes. The temperature dependences of the elastic constants of NBT-BT near the morphotropic phase boundary are determined for the first time. The unpoled NBT-BT single crystals exhibits the typical relaxor behaviors, presenting broad acoustic and dielectric anomalies. The application of electric field induced discontinuous changes in the elastic properties at ~110℃, which indicates field-induced phase transition occurred. The electric field also changes the dielectric constant from more relaxor-like to ferroelectric-like dielectric behavior.

Analysis of Higher Order Modes of Waveguide Latching Phase Shifter (도파관 래칭 이상기의 고차 모드 해석)

  • 신동만;윤상원;박동철
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.8
    • /
    • pp.1145-1151
    • /
    • 1989
  • New method to calculate the characteristics of the dominant and higher order modes of waveguide latching phase shifters are presented. Due to the tensor permeability, E and H fields inside the ferrite are expanded in terms of the LSE and LSM eigenmodes of the dielectric-slab-loaded waveguide. The equivalent coupled transmission line equations on the transverse plane are derived to obtain the dispersion characteristics and the E and H field distributions. Numerical results at X-band are compared with those published previously. The derived field distributions can be used to suppress the higher order modes of the latching phase shifters, so that the phase shift from the dominant mode only contributes the performance of the phase shifters.

  • PDF

Effect of Phase Arrangement on Magnetic Field of Overhead Transmission Lines (송전선로의 상배열이 자계 크기에 미치는 영향)

  • Kim, Sang-Beom;Lee, Dong-Il;Shin, Koo-Yong;Kim, Jeong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1678-1680
    • /
    • 1998
  • The purpose of this study is to obtain optimum arrangement of phase conductors in minimizing magnetic field from overhead transmission lines. Data of the transmission lines rated 345 kV of the KEPCO(Korea Electric Power Company)'s system were used. For a three phase-double circuit transmission line, low-reactance arrangement is optimum in minimizing magnetic fields. For a three phase-four circuit, optimum phase arrangement is a-b-c-b-a-c(lower two circuits, clockwise)/b-c-a-c-a-b(upper two circuits, clockwise).

  • PDF

Effects of Segmented Poles on Exciting Forces for BLDC Motors (세그먼트 극을 가진 BLDC 전동기의 가진력에 관한 연구)

  • Kim, Gyeong-Tae;Hwang, Sang-Mun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.10
    • /
    • pp.530-536
    • /
    • 1999
  • This paper investigates effects of segmented poles on exciting forces such as cogging torque, BEMF, phase current, torque ripple and local forces. Cogging torque, BEMF and local force are determined by FEM analysis and phase current is calculated using voltage equations after determining BEMF and phase inductance. Effective dead zones at pole separations result in wider than the physical dead zones due to leakage field during magnetization. Due to the existence of dead zones, there exist additional exciting harmonics of the cogging torque which play adverse effect on vibration and noise performance. The magnitude of BEMF is decreased and the waveforms are also distorted depending on dead zone positions. Segmented poles inevitably cause uneven magnetic field distribution at pole separations which introduces additional harmonics of exciting forces which are detrimental to structural to structural resonances. They also decrease motor efficiency by reducing effective phase BEMF.

  • PDF

Numerical Simulation of Two-Phase Flow field and Performance Prediction for Solid Rocket Motor Nozzle

  • Wahab, Shafqat;Kan, Xie;Yu, Liu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.275-282
    • /
    • 2008
  • This paper presents numerical investigation of multi-phase flow in solid rocket motor nozzle and effect of multi-phases on the performance prediction of the Solid Rocket Motor. Aluminized propellants are frequently used in solid rocket motors to increase specific impulse. An Eulerian-Lagrangian description has been used to analyze the motion of the micrometer sized and discrete phase that consist of the larger particulates present in the Solid Rocket Motor. Uniform particles diameters and Rosin-Rammler diameter distribution method has been used for the simulation of different burning of aluminum droplets generating aluminum oxide smokes. Roe-FDS scheme has been used to simulate the effects of the multi-phase flow. The results obtained show the sensitivity of this distribution to the nozzle flow dynamics, primarily at the nozzle inlet and exit. The analysis also provides effect of two phases on performance prediction of Solid Rocket Motor.

  • PDF

Digital Holographic Microscopy with extended field of view using tool for generic image stitching

  • Stepien, Piotr;Korbuszewski, Damian;Kujawinska, Malgorzata
    • ETRI Journal
    • /
    • v.41 no.1
    • /
    • pp.73-83
    • /
    • 2019
  • This paper describes in detail the processing path leading to successful phase images stitching in digital holographic microscope for the extension of the field of view. It applies FIJI Grid/Collection Stitching Plugin, which is a general tool for images stitching, non-specific for phase images. The FIJI plugin is extensively supported by aberration and phase offset correction. Comparative analysis of different aberration correction methods and data processing strategies is presented, together with the critical analysis of their applicability. The proposed processing path provides good background for statistical phase analysis of cell cultures and digital phase pathology.

Effect of gravity on a micropolar thermoelastic medium with voids under three-phase-lag model

  • Alharbi, Amnah M.;Othman, Mohamed I.A.;Al-Autabi, Al-Anoud M.Kh.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.579-590
    • /
    • 2020
  • This paper's objective is to investigate the effect of gravity on a micropolar thermoelastic medium with voids. The problem is assessed according to the three-phase-lag model. An analysis of the resulting non-dimensional displacement, temperature variation, and internal stress of the study material is carried out and presented graphically. The non-dimensional displacement, temperature, micro-rotation, the change in the volume fraction field and stress of the material are obtained and illustrated graphically. Comparisons are made with the results predicted by different theories for different values of gravity, the phase-lag of the heat flux and the phase-lag of the temperature gradient. The numerical results reveal that gravity and relaxation times have a significant influence on the distribution of the field quantities. Some notable insights of interest are deduced from the investigation.

Effect of magnetic field and gravity on thermoelastic fiber-reinforced with memory-dependent derivative

  • Mohamed I.A. Othman;Samia M. Said;Elsayed M. Abd-Elaziz
    • Advances in materials Research
    • /
    • v.12 no.2
    • /
    • pp.101-118
    • /
    • 2023
  • The purpose of this paper is to study the effects of magnetic field and gravitational field on fiber-reinforced thermoelastic medium with memory-dependent derivative. Three-phase-lag model of thermoelasticity (3PHL) is used to study the plane waves in a fiber-reinforced magneto-thermoelastic material with memory-dependent derivative. A gravitating magneto-thermoelastic two-dimensional substrate is influenced by both thermal shock and mechanical loads at the free surface. Analytical expressions of the considered variables are obtained by using Laplace-Fourier transforms technique with the eigenvalue approach technique. A numerical example is considered to illustrate graphically the effects of the magnetic field, gravitational field and two types of mechanical loads(continuous load and impact load).

Study on Retardation Value of Fringe-Field Driven Homogeneously Aligned Nematic Liquid Crystal Cell using Liquid Crystals with Positive Dielectric Anisotropy (유전율 이방성이 양인 액정을 이용한 Fringe-Field Driven 수평 배향셀의 위상지연값 연구)

  • 정송희;김향율;송성훈;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.305-310
    • /
    • 2004
  • We have studied the optimal phase retardation value of a homogeneously aligned liquid crystal (LC) driven by fringe-field when using the LC with positive dielectric anisotropy. In general, the transmittance of a homogeneous aligned LC cell under crossed polarizer is maximum when a twist angle of LC by in-plane rotation is 45$^{\circ}$ with polarizer and the cell retardation becomes λ/2. However, the device using the LC with positive dielectric anisotropy does not follow this since the degree of rotation of the LC is dependent on electrode position and in addition the LCs tilt up along the fringe-field. At the center of common and pixel electrode, the LC is most twisted around a middle position of a cell whereas at the edge position of pixel electrode, the LC is most twisted near bottom surface of a cell. Consequently, the optimal phase retardation of the device becomes much larger than λ/2 and the transmittance can be described using the combination of the in-plane switching and twisted nematic mode.

Measurement of 2 Dimensional Magnetic Property of Grain-oriented Electrical Steel Sheet According to Exciting Field Direction using SST with 2 Axes Excitation (이방향 여자형 SST를 이용한 이방성 전기강판의 인가자계 방향에 따른 2차원 자계특성 측정)

  • Hwan, Eum-Young;Kim, Hong-Jung;Hong, Sun-Ki;Shin, Pan-Seok;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.5
    • /
    • pp.250-257
    • /
    • 2006
  • It is well known that Grain-oriented electrical steel sheets have two dimensional magnetic properties according to the direction of exciting field such as non-linear phase difference between magnetic flux density and magnetic field intensity vectors, different iron loss and permeability even when an alternating magnetic field is applied. The measurement and application of the two dimensional magnetic properties of the Grain-oriented electrical steel sheets, therefore, are very important for the design and precise performance analysis of electric machines made of them. As the direction of exciting field changes, in this paper, the two dimensional magnetic properties of a Grain-oriented electrical steel sheet, i.e., non-linear B-H curves, phase difference between B and H, and iron loss characteristics, are measured using SST(Single Sheet Tester) which has two axes excitation. The measured results are presented in two ways: using $(B,\theta_B)$ method and using hysteresis loops along rolling and transverse directions, respectively.