• Title/Summary/Keyword: Phase-shifting method

Search Result 183, Processing Time 0.021 seconds

Application of Phase-Shifting Method in Speckle Interferomtery to Measurement of Micro-Scale Displacement

  • Baek, Tae-Hyun;Kim, Myung-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.3
    • /
    • pp.162-168
    • /
    • 2006
  • Speckle interferometry with phase-shifting method has been applied to measurement of micro-scale displacement through optical signal processing. Four-step phase-shifting method by PZT is used to measure out-of-plane displacement in spot-welded cantilever and results of optical experiments are comparable to those of FEM. Phase-shifting method using Fourier transform by PZT is applied to measurement of in-plane displacement on rectangular steel plate with a circular hole. The results of optical experiment agree well with theoretical calculation. New phase-shifting method in speckle interferometry has been implemented with a quarter wave plate. In-plane displacement of specimen is measured by the new phase-shifting method. Results of optical experiment show that the quarter wave plate can be used for phase-shifting method that is cheap and easy to use in speckle interferometry.

2-step Quadrature Phase-shifting Digital Holographic Optical Encryption using Orthogonal Polarization and Error Analysis

  • Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.354-364
    • /
    • 2012
  • In this paper, a new 2-step quadrature phase-shifting digital holographic optical encryption method using orthogonal polarization is proposed and tolerance errors for this method are analyzed. Unlike the conventional technique using a PZT mirror, the proposed optical setup comprises two input and output polarizers, and one ${\lambda}$/4-plate retarder. This method makes it easier to get a phase shift of ${\pi}$/2 without using a mechanically driven PZT device for phase-shifting and it simplifies the 2-step phase-shifting Mach-Zehnder interferometer setup for optical encryption. The decryption performance and tolerance error analysis for the proposed method are presented. Computer experiments show that the proposed method is an alternate candidate for 2-step quadrature phase-shifting digital holographic optical encryption applications.

Measurement of Principal Stress Direction by Photoelastic Phase Shifting Method (광탄성 위상이동법을 이용한 주응력 방향 측정법)

  • 김명수;김환;백태현
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1982-1989
    • /
    • 2004
  • In photoelasticity, the directions of principal stresses are given by isoclinic fringe patterns. In this study, photoelastic theory is represented by Jones calculus and the photoelastic 8-step phase shifting method is described. A feasibility study using computer simulation is done to get isoclinics from photoelastic fringes of a circular disk under diametral compression. Fringe patterns of the disk are generated from the stress-optic law. The magnitudes of isoclinics obtained from the fringe patterns of computer simulation and experiment are compared with those of theory. The results are close between them. Then, the 8-step phase shifting method is applied to get distributions of isoclinics along the specified lines of a cuved beam plate under tensile load. Experimental results obtained from the phase shifting method were compared with those of finite element analysis (ANSYS). It is confirmed that measurement of isoclinic distributions is possible by use of photoelasitc phase shifting method.

Measurement of three dimensional shapes using phase-shifting shadow moire method (위상 이동 그림자 무아레 방법을 이용한 3차원 형상의 측정)

  • 강영준
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.39-45
    • /
    • 1997
  • Shadow moire topography has been used as a noncontact method for measuring the 3-D shapes of objects. The moire fringes are results from the superposition of a master grating and its shadow projected on the surface of an object. But in case of the classical shadow moire method, in general, the resolution is a few tenths of millimeter. It is difficult to use a phase -shifting method in shadow moire because it is impossible to obtain uniform phase shifts on the whole field. But in this study , We introduce a phase-shifting method to improve the resolution of the classical shadow moire method. This method is based on the fact that if the depth of object is much less than the distance between the observer and the master grating, the phase shifts are almost uniform on the whole field area. Finally, we applied this new phase-shifting method to the measurement of the 3-D shape of a coin.

  • PDF

Comparison of In-Plane Measurement of Phase-Shifting with Time-Average Method (위상이동법과 시간평균법의 면내변위 측정 비교)

  • Kim, Kyoung-Suk;Kim, Dong-Iel;Jung, Hyun-Chul;Kang, Ki-Soo;Lee, Chan-Woo;Yang, Seung-Pil;Jarng, Soon-Suck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.53-58
    • /
    • 1999
  • Even I the Electronic Speckle Pattern Interferometry(ESPI) method that measure the strain of object within wavelength of light is less visibility than Holographic Interferometry(HI) method, the merits of application, convenience and time-save have made the method practical in industry. However, the existing ESPI methods that are based on dual-exposure, real-time and time-average method have difficulties for accurate measurement, due to irregular intensity and shake of phase. Recently, in order to solve this problem, phase shifting method have been proposed. In this method, the path of reference light in interference is shifted to make improvement in distinction and precision. But this method includes too many noise, caused by the problem of relationship between object and phase. Therefore, a method to reduce noise muse be introduced. In this paper, least square fitting method is proposed. As results, the phase-map is influenced by precise phase shifting and current of notes and speckle pattern obtained by phase shifting method is improved on the existing method driven from time-average method.

  • PDF

Measurement of a Mirror Surface Topography Using 2-frame Phase-shifting Digital Interferometry

  • Jeon, Seok-Hee;Gil, Sang-Keun
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.245-250
    • /
    • 2009
  • We propose a digital holographic interference analysis method based on a 2-frame phase-shifting technique for measuring an optical mirror surface. The technique using 2-frame phase-shifting digital interferometry is more efficient than multi-frame phase-shifting techniques because the 2-frame method has the advantage of a reduced number of interferograms, and then takes less time to acquire the wanted topography information from interferograms. In this measurement system, 2-frame phase-shifting digital interferograms are acquired by moving the reference flat mirror surface, which is attached to a piezoelectric transducer, with phase step of 0 or $\pi$/2 in the reference beam path. The measurements are recorded on a CCD detector. The optical interferometry is designed on the basis of polarization characteristics of a polarizing beam splitter. Therefore the noise from outside turbulence can be decreased. The proposed 2-frame algorithm uses the relative phase difference of the neighbor pixels. The experiment has been carried out on an optical mirror which flatness is less than $\lambda$/4. The measurement of the optical mirror surface topography using 2-frame phase-shifting interferometry shows that the peak-to-peak value is calculated to be about $0.1779{\mu}m$, the root-mean-square value is about $0.034{\mu}m$. Thus, the proposed method is expected to be used in nondestructive testing of optical components.

A Study on the Improvement of Accuracy of Surface Measurement in the Phase-Shifting Shadow Moir$\'{e}$ Method (위상이동 그림자 무아레방법을 이용한 형상측정법의 정확도 개선에 관한 연구)

  • 강영준;유원재;권용기
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.96-102
    • /
    • 1998
  • In this study, the theory and application of phase-shifting shadow moire topography is focused on the non-contact measurement of object surfaces for practical use in the field of production engineering. Shadow moire topography has been studied during last few decades in the area of the optical physics, and now its mathmatical theory has been established. Generally, in case of the classical shadow moire topography, the sensitivity is a few tenths of millimeter in best cases. Here we tried the application of phase-shifting method to the conventional shadow moire topography. But the reference grating and the deformed grating are mutually dependent because it is impossible to obtain uniform phase shifts on the whole Held. Therefore it is difficult to use a phase-shifting method in shadow moire topography. However, it was shown that constant phase-shifting was able to be measured by moving both the grating and light source. Finally we obtained a better result by using this procedure and applied the phase-shifting shadow moire to three dimensional object measurement.

  • PDF

East 3-Dimensional Shape Reconstruction Using Phase-Shifting Grating Projection Moire Method (위상천이 영사식 모아레법을 이용한 고속 3차원 형상복원)

  • 최이배;구본기;정연구
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.11a
    • /
    • pp.111-115
    • /
    • 1998
  • A phase-shifting projection moire method particularly intended for high-speed three-dimensional shape reconstruction of diffuse objects is presented. Emphasis is on realization of phase-shifting fringe analysis in projection moire topography using a set of line grating pairs designed to provide different phase shifts in sequence. Further a time-integral fringe capturing scheme is devised to remove undesirable high frequency original grating patterns in real-time without time-consuming software image processing. Finally the performances of the proposed method are discussed with measurement results.

  • PDF

Phase error compensation for three-dimensional shape measurement based on a phase-shifting method (위상천이법을 이용한 삼차원 형상측정에서 위상오차 보정)

  • Park, Yoon-Chang;Ahn, Seong-Joon;Kang, Moon-Ho;Kwon, Young-Chul;Ahn, Seung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3023-3030
    • /
    • 2009
  • In this paper, a prediction and compensation method for the error in the phase measured by using the proportionality between two wavelengths in the TW-PMP (Two-wavelength Phase Measuring Profilometry) is proposed and experimental results are shown to verify the usefulness of the proposed method. For sample object, firstly, a phase-shifting with a quite large number of steps is adopted in measurement, compared with the conventional phase-shifting method, secondly, a 3-3 step phase-shifting method is used to measure the same object which is applied to high-speed 3D shape measurement, and then, measured results from these two phase-shifting methods are compared to calculate measurement noises. From the experimental results applying the proposed compensation method to the measured beat phase and absolute phase, it has proven that noises are decreased by 90% and 17.2% for each case.

Optimal Placement Design of Phase-Shifting Transformers for Power System Congestion Problems (계통 혼잡처리를 위한 Phase-Shifting Transformers의 최적 위치 선정)

  • Kim Kyu-Ho;Song Kyung-Bin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.12
    • /
    • pp.567-572
    • /
    • 2005
  • This paper presents a scheme to design optimal placement of phase-shifting transformers for power system congestion problems. A good design of phase-shifting transformers placement can improve total transfer capability in interconnected systems. In order to find the optimal placement of phase-shifting transformers, the power flows of the interesting transmission lines are evaluated using sequential quadratic programming technique. This algorithm considers power balance equations and security constraints such as voltage magnitudes and transmission line capacities. The proposed scheme is tested in 10 machines 39 buses and IEEE 57 buses systems. Test result shows that the proposed method can find the optimal placement of phase-shifting transformers to solver power system congestion problems.