• Title/Summary/Keyword: Phase-shifting Fringe Analysis

Search Result 26, Processing Time 0.022 seconds

Hybrid Stress Analysis around a Circular Hole in a Tensile Plate by Use of Phase Shifting Photoelasticity (광탄성 위상이동법에 의한 인장시편 원형 구멍주위 하이브리드 응력해석)

  • Baek, Tae-Hyun;Lee, Choon-Tae;Yang, Min-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 2007
  • A hybrid experimental-numerical method is presented for determining the stresses around a circular hole in a finite-width, tensile loaded plate. Measured fringe orders along straight lines provided the input information on the external boundary of the hybrid element. In order to see the effects of varying stress field, different numbers of terms in a power-series representation of the complex type conformal mapping stress function were tested. For qualitative comparison, actual isochromatic fringes were compared with reconstructed theoretical fringes using stress-optic law. For quantitative comparison, relative errors and standard deviations with respective to relative errors were analyzed for all measured points by changing the number of terms of stress function. The hybrid results are highly comparable with those predicted by FEA. The results show that this approach is effective and promising because isochromatic data along the straight lines in photoelasticity can be conveniently measured by use of phase shifting photoelasticity.

Photoelastic Stress Analysis for a Rhombus Plate under Compressive Load Using Image Processing Technique (압축하중을 받는 마름모 판에 대한 영상처리기법을 이용한 광탄성 응력 해석)

  • Liu, Guan Yong;Kim, Myung Soo;Baek, Tae Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.148-154
    • /
    • 2014
  • Photoelasticity is a useful technique for obtaining the differences and directions of principal stresses in a model. In conventional photoelasticity, the photoelastic parameters are measured manually point by point. Identifying and measuring photoelastic data is time-consuming and requires skill. The fringe phase shifting method was recently developed and has been found to be convenient for measuring and analyzing fringe data in photo-mechanics. This paper presents an experimental study on the stress distribution along a horizontal line that passes the central point of a rhombus plate made of Photoflex (i.e., type of urethane rubber). The isoclinic fringe and/or principal stress direction is constant on this horizontal line, so a four-bucket phase shifting method can be applied. The method requires four photoelastic fringes that are obtained from a circular polariscope by rotating the analyzer at $0^{\circ}C$, $45^{\circ}C$, $90^{\circ}C$ and $135^{\circ}C$. Experimental measurements using the method were quantitatively compared with the results from FEM analysis; the results from the two methods showed comparable agreement.

A Study on Elecctronic Speckle Contouring for 3-D Shape Measurement (3차원 형상측정을 위한 전자 스페클 등고선 추출법에 관한 연구)

  • 김계성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.239-244
    • /
    • 1998
  • ESP(Electronic Speckle Pattern Interferometry) is an optical technique to measure deforamtion of engineering components and materials in industrial areas. ESPI, a non-contact and non-destructive measuring method, is capable of providing full-field results with high spatial resolution and high speed. One of important application aspects using electronic speckle pattern interferometry is to generate contours of a diffuse object in order to provide data for 3-D shape analysis and topography measurement. The electronic speckle contouring is suitable for providing measurement range from millimeters to several centimeters. In this study, we introduce the contouring method by modified dual-beam speckle pattern interferometer and a shift of the two illumination beams through optical fiber in order to obtain the contour fringe patterns. Before the experiments, we performed the geometric analysis for dual-beam-shifted ESPI contouring. And by this geometric analysis, we performed the electronic speckle contouring experiment. We used 4-frame phase shifting method with PZT for quantitative analysis of contour fringes. Finally, we showed good agreements between the geometric analysis and experimental results.

  • PDF

Two-Wavelength Phase-Shifting Projection $Moir\acute{e}$ Topography for Measurement of Three-Dimensional Profiles with High Step Discontinuities (고단차 불연속 형상의 3차원 측정을 위한 이중파장 위상천이 영사식 무아레)

  • Kim, Seung-Woo;Oh, Jung-Taek;Jung, Moon-Sik;Choi, Yi-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1129-1138
    • /
    • 1999
  • [$Moir\acute{e}$] technique is now being extensively investigated as a fast non-contact means of three-dimensional profile measurement especially for reverse engineering. One problem with $moir\acute{e}$ technique is so called $2\pi$-ambiguity problem that limits the maximum step height difference between two neighboring sampling points to be less than half the equivalent wavelength of $moir\acute{e}$ fringes. In this investigation, a new two-wavelength scheme of projection $moir\acute{e}$ topography is proposed and tested to cope with the $2\pi$-ambiguity problem. Experimental results are discussed to assess the new method in measuring large objects with high step discontinuities.

Diffraction grating interferometer for null testing of aspheric surface with binary amplitude CGH (이진 컴퓨터 형성 홀로그램을 이용한 비구면 형상 측정용 위상편이 회절격자 간섭계)

  • 황태준;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.313-320
    • /
    • 2004
  • We present a null testing method fer aspheric surfaces, utilizing a phase-shifting diffraction grating interferometer along with a binary amplitude computer generated hologram (CGH). The binary amplitude CGH is designed to compensate for the wavefront between a point source and the aspheric surface under test. The fringe visibility of the grating interferometer is controlled easily by selecting suitable grating diffraction orders for the measurement and reference wavefronts or by optimizing the groove shape of the grating used. The binary amplitude CGH is designed by numerical analysis of ray tracing and fabricated using e-beam lithography for autostigmatic testing. Experimental results of a large-scale aspheric mirror surface are discussed to verify the measurement performance of the proposed diffraction grating interferometer.

A Study on Shape Measurement by Using Electronic Speckle Pattern Interferometry (전자 스페클 패턴 간섭법을 이용한 형상 측정에 관한 연구)

  • 강영준;김계성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.156-164
    • /
    • 1998
  • Electronic Speckle Pattern Interferometry(ESPI) has been used to measure surface deformations of engineering components and materials in industrial areas. ESPI, a non-contact and non-destructive technique, is capable of providing full-field results with high spatial resolution and high speed. One of the important application using electronic speckle pattern interferometry is electronic speckle contouring of a diffused object for 3-D shape analysis and topography measurement. Generally the electronic speckle contouring is suitable for providing measurement range from millimeters to several centimeters. In this study, we introduce the contouring method by modified dual-beam speckle pattern interferometer and the shift of the two illumination beams through optical fiber in order to obtain the contour fringe patterns. We also describe formation process of depth contour fringes and grid contour fringes by shifting direction of the two illumination beams. Before the experiments, we performed the geometric analysis for dual-beam-shifted ESPI contouring, and then, the electronic speckle contouring experiment with various specimens. For quantitative analysis of the contour fringes, we used 4-frame phase shifting method with PZT Finally, good agreement between the geometric analysis and experimetal results is obtained.

  • PDF