• 제목/요약/키워드: Phase-plane trajectory

검색결과 31건 처리시간 0.025초

위상면궤적을 이용한 전력계통의 고장판별에 관한 연구 (A Study on the Classification of Arcing Faults in Power Systems using Phase Plane Trajectory Method)

  • 박남옥;신영철;안상필;여상민;김철환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권5호
    • /
    • pp.209-216
    • /
    • 2002
  • Recently, there is greater demand for stable supply of electric power as higher level of our living. It becomes the important problem that the cause of fault in power system is found out in early stage, if once it occurs. In this respect, accurate classification of arcing faults in power systems is vitally important. This paper presents a new classification method for arcing faults in power system. To obtain data of various faults including high impedance fault(HIF) and low impedance fault(LIF), HIF model with the ZnO arrester is adopted and implemented within the overall transmission system model based on the electromagnetic transients program(EMTP). Results of phase plane trajectory if Clarke modal transformation using postfault current and voltage are utilized to classify types of arcing faults. The performance of the proposed method is tested on a typical 154 kV korean transmission system under various fault conditions. As can be seen from results, phase plane trajectory of postfault current should be combined with that of o component from Clarke modal transformation to give reliability of clear fault classification. Thus the proposed method can classify arcing faults including LIFs and HIFs accurately in power systems.

Clarke법과 위상면궤적을 이용한 고저항 지락사고의 판별에 관한 연구 (A Study on the Classification of High Impedance Faults using Clarke Transformation and Plane Trajectory Method)

  • 김철환;신영철;안상필
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.243-245
    • /
    • 2001
  • This paper presents a new classification method for high impedance faults in power systems. Results of phase plane trajectory with Clarke modal transformation using postfault current and voltage are utilized to classify types of arcing faults. The performance of the proposed method is tested on a typical 154 kV korean transmission system under various fault conditions using EMTP. As can be seen from results, phase plane trajectory of postfault current should be combined with that of o component from Clarke modal transformation to give reliability of clear fault classification. Thus the proposed method can classify arcing faults including LIFs and HIFs accurately in power systems.

  • PDF

B-평면 조준법을 이용한 화성 탐사선의 궤적 보정을 위한 최적의 기동 설계 (OPTIMAL TRAJECTORY CORRECTION MANEUVER DESIGN USING THE B-PLANE TARGETING METHOD FOR FUTURE KOREAN MARS MISSIONS)

  • 송영주;박은서;유성문;박상영;최규홍;윤재철;임조령;최준민;김병교
    • Journal of Astronomy and Space Sciences
    • /
    • 제22권4호
    • /
    • pp.451-462
    • /
    • 2005
  • 향후 우리나라의 화성 탐사선 개발을 대비하여 B-평면 조준법(B-plane targeting method)을 이용한 최적 궤적 보정 기동(Optimal Trajectory Correction Maneuver, TCM)의 설계에 대한 연구를 수행하였다. 궤적 보정 기동을 설계하기 위하여 요구되는 화성 탐사 임무의 각 단계별 비행 궤적 및 궤도 정보 역시 이 연구를 통해 개발된 알고리즘을 이용하여 산출 할 수 있으며, 관련 정보는 임무 설계시 필요로 하는 최소의 섭동력들을 고려한 상황에서 산출되었다. 항행 단계에서의 탐사선은 다양한 섭동력에 의한 영향 또는 순간 기동의 오차로 기인된 비행 궤적의 오차로 인하여 목표한 위치에 도달하지 못할 수 있다. 따라서 탐사선의 적절한 비행 궤적을 유지하고 목표하고자 한 지점에 정확하게 도달시키기 위하여 도착 행성의 위치에 대하여 설정된 B-평면 좌표계를 이용하여 탐사선의 방향을 조준하여 줄 필요가 있다. NPSOL 소프트웨어를 사용하여 관련 최적해를 도출하였으며 임무동안 수행되는 기동의 총 크기를 최소화 시키도록 목적함수를 설정하였다. 수행되는 기동의 횟수는 설계자가 임의로 설정($1\~5$회)할 수 있도록 하였으며 그 시기 역시 조정 변수로 설정 할 수 있다. 마지막으로 화성 도착시 설정된 B-평면 좌표의 위치가 최종 구속조건으로 적용되어 최적화 문제를 완성하게 된다. 이 연구를 통하여 지구 출발에서부터 화성 도착, 그리고 임무 수행을 위한 포획궤도에 이르기까지 전반적인 임무 설계 및 해석이 가능하게 되었으며, 항행 단계에서 이루어지는 궤적 보정 기동의 최적 시기 및 크기 또한 분석이 가능하게 되었다. 이 연구를 통하여 개발된 알고리즘을 이용하여 향후 우리나라의 화성 탐사 임무의 설계, 분석이 가능하다.

Coordinated Control Strategy for Power Systems with Wind Farms Integration Based on Phase-plane Trajectory

  • Zeng, Yuan;Yang, Yang;Qin, Chao;Chang, Jiangtao;Zhang, Jian;Tu, Jingzhe
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.20-29
    • /
    • 2018
  • The dynamic characteristics of power systems become more and more complex because of the integration of large-scale wind power, which needs appropriate control strategy to guarantee stable operation. With wide area measurement system(WAMS) creating conditions for realizing realt-ime transient stability analysis, a new coordinated control strategy for power system transient stability control based on phase-plane trajectory was proposed. When the outputs of the wind farms change, the proposed control method is capable of selecting optimal generators to balance the deviation of wind power and prevent transient instability. With small disturbance on the base operating point, the coordinated sensitivity of each synchronous generator is obtained. Then the priority matrix can be formed by sorting the coordinated sensitivity in ascending order. Based on the real-time output change of wind farm, coordinated generators can be selected to accomplish the coordinated control with wind farms. The results in New England 10-genrator 39-bus system validate the effectiveness and superiority of the proposed coordinated control strategy.

가변구조를 이용한 직류전동기의 위치제어 (Position control of DC Motor using Variable Structure)

  • 임선종;남문현;김낙교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.337-341
    • /
    • 1989
  • This theory has fast response and low overshoot by transforming its structure and this system may have new character which did not appear in this system. The VSS system transform its structure by switching logic. Then, the state trajectory is to sliding along the switching line to the phase-plane orgin. The phase trajectory is known as the sliding mode of this controller. This paper performed position control in the theory and analysised the change in variable loads.

  • PDF

슬라이딩 모드를 이용한 SCARA 로보트의 궤적제어에 관한 연구 (A study on the trajectory control of SCARA robot using sliding mode)

  • 진상영;이민철;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1031-1035
    • /
    • 1993
  • In this paper, we suggest a new algorithm diminishing the chattering in sliding mode control by setting a dead-band along the switching line on the phase plane although nonlinear terms of an nonlinear system are regarded as disturbances and apply this algorithm to the trajectory control of SCARA robot By this algorithm, we can expect the high performance of the trajectory trajet of an industrial robot which needs a robust and simple algorithm.

  • PDF

공간상의 길이 주어진 두 대의 로보트를 위한 최소시간 충돌회피 경로 계획 (Minimum-Time Trajectory Planning Ensuring Collision-Free Motions for Two Robots with Geometric Path Constraints)

  • 이지홍
    • 전자공학회논문지B
    • /
    • 제28B권5호
    • /
    • pp.357-368
    • /
    • 1991
  • Collision-free trajectory planning for two robots is considered. The two robot system handled in the paper is given specified geometric paths for two robots, and the task is repeating. Then, the robot dynamics is transformed as a function of the traveled lengths along the paths, and the bounds on acceleration and velocity are described in the phase plane be taking the constraints on torques and joint velocities into consideration. Collision avoidance and time optimality are considered simultaneously in the coordination space and the phase plane, respectively. The proof for the optimality of the proposed algorithm is given, and a simulation result is included to show the usefulness of the proposed method.

  • PDF

위성발사체의 궤적최적화와 최적 유도 알고리듬 설계 (Trajectory Optimization and Optimal Explicit Guidance Algorithm Design for a Satellite Launch Vehicle)

  • 노웅래;김유단;송택렬
    • 제어로봇시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.173-182
    • /
    • 2001
  • Ascent trajectory optimization and optimal explicit guidance problems for a satellite launch vehicle in a 2-dimensional pitch plane are studied. The trajectory optimization problem with boundary conditions is formulated as a nonlinear programming problem by parameterizing the pitch attitude control variable, and is solved by using the SQP algorithm. The flight constraints such as gravity-turn are imposed. An optimal explicit guidance algorithm in the exoatmospheric phase is also presented, the guidance algorithm provides steering command and time-to-go value directly using the current states of the vehicle and the desired orbit insertion conditions. To verify the optimality and accuracy of the algorithm simulations are performed.

  • PDF

Effects of Vertical Alignment of Leg on the Knee Trajectory and Pedal Force during Pedaling

  • Kim, Daehyeok;Seo, Jeongwoo;Yang, Seungtae;Kang, DongWon;Choi, Jinseung;Kim, Jinhyun;Tack, Gyerae
    • 한국운동역학회지
    • /
    • 제26권3호
    • /
    • pp.303-308
    • /
    • 2016
  • Objective: This study evaluated the vertical and horizontal forces in the frontal plane acting on a pedal due to the vertical alignment of the lower limbs. Method: Seven male subjects (age: $25.3{\pm} 0.8years$, height: $175.4{\pm}4.7cm$, weight: $74.7{\pm}14.2kg$, foot size: $262.9{\pm}7.6mm$) participated in two 2-minute cycle pedaling tests, with the same load and cadence (60 revolutions per minute) across all subjects. The subject's saddle height was determined by the height when the knee was at $25^{\circ}$ flexion when the pedal crank was at the 6 o'clock position (knee angle method). The horizontal force acting on the pedal, vertical force acting on the pedal in the frontal plane, ratio of the two forces, and knee range of motion in the frontal plane were calculated for four pedaling phases (phase 1: $330{\sim}30^{\circ}$, phase 2: $30{\sim}150^{\circ}$, phase 3: $150{\sim}210^{\circ}$, phase 4: $210{\sim}330^{\circ}$) and the complete pedaling cycle. Results: The range of motion of the knee in the frontal plane was decreased, and the ratio of vertical force to horizontal force and overall pedal force in the complete cycle were increased after vertical alignment. Conclusion: The ratio of vertical force to horizontal force in the frontal plane may be used as an injury prevention index of the lower limb.

슬라이딩모드를 이용한 SCARA 로보트의 궤적제어에 관한 연구 (A Study On The Trajectory Control of A SCARA Robot Using Sliding Mode)

  • 이민철;진상영;이만형
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.99-110
    • /
    • 1995
  • An industrial robot needs a simple and robust control algorithm obtaining high precision control performance in spite of disturbance and parameter's change. In this paper, for solving this problem, a new sliding mode control algorithm is proposed and applied to the trajectory control of a SCARA type robot. The proposed algorithm has diminished the chattering occurring in sliding mode by setting a dead band along the switching line on the phase plane. It shows that we can easily obtain a simple switching control input satisfying sliding mode in spite of regarding nonlinear terms of a manipulator and servo system as disturbance. A guideline for selection of dead-band width is determined by optimal value of cost function presenting magnitudes of chattering and error. By this algorithm, we can expect the high performance of the trajectory tracking of an industrial robot which needs a robust and simple algorithm.