• 제목/요약/키워드: Phase-dependent

Search Result 1,512, Processing Time 0.025 seconds

Effect of Essential Oil from Cuscuta japonica CHOISY on Proliferation and Migration in Human Skin Keratinocyte (새삼(Cuscuta japonica CHOISY) 유래 정유의 피부 각질형성세포 증식 및 이주에 미치는 효과)

  • Choi, In Ho;Kim, Do Yoon;Lee, Hwan Myung
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.44-50
    • /
    • 2022
  • The migration and proliferation of keratinocytes are key events in re-epithelization, itself a major phase in the wound healing process. Cuscuta japonica Choisy (CJC) is used as a traditional medicine to improve liver, heart, and intestinal function, and its extracts are reported to have various biological properties such as whitening, anti-oxidancy, and an anti-acne effect. However, it is not yet known in particular whether or not CJC essential oil (CJCEO) affects skin regeneration. In the present study, we isolated CJCEO by solvent extraction and tested its effect on wound healing responses using normal human keratinocytes, namely HaCaT cells. We found that CJCEO induced proliferation as well as migration in HaCaT cells in a dose-dependent manner. Compared with a control group, CJCEO treatment at 250 ㎍/ml increased proliferation by 239.98±5.51% in HaCaT cells in a dose and migration by 124.86±6.06%. Moreover, the oil induced sprout outgrowth and, at 250 ㎍/ml, increased collagen synthesis by 148.56±15.47% in HaCaT cells. These results demonstrate that CJCEO may promote skin regeneration and wound healing by increasing the migration, proliferation, and collagen synthesis of HaCaT cells. We therefore suggest that CJCEO could be used as a cosmetic material.

Design and output control technique of sonar transmitter considering impedance variation of underwater acoustic transducer (수중 음향 트랜스듀서의 임피던스 변화를 고려한 소나 송신기의 설계 및 출력 제어 기법)

  • Shin, Chang-Hyun;Lee, Yoon-Ho;Ahn, Byoung-Sun;Yoon, Hong-Woo;Kwon, Byung-Jin;Kim, Kyung-Seop;Lee, Jeong-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.481-491
    • /
    • 2022
  • The active sonar transmission system consists of a transmitter that outputs an electrical signal and an underwater acoustic transducer that converts the amplified electrical signal into an acoustic signal. In general, the transmitter output characteristics are dependent on load impedance, and an underwater acoustic transducer, which is a transmitter load, has a characteristic that the electrical impedance varies largely according to frequency when driven. In such a variable impedance condition, the output of the active sonar transmission system may become unstable. Hence, this paper proposes a design and control technique of a sonar transmitter for transmitting a stable transmission signal even under variable impedance conditions of an underwater acoustic transducer in an active sonar transmission system. The electrical impedance characteristics of the underwater acoustic transducer are experimentally analyzed, and the sonar transmitter is composed of a single-phase full-bridge inverter, an LC filter, and a matching circuit. In this paper, the design and output control method of the sonar transmitter is proposed to protect the transmitter and transducer. It can secure stable output voltage characteristics even if it transmits the Linear Frequency Modulation (LFM) signal. The validity is verified through the simulation and the experiment.

Anisotropic Compression Behavior and Phase Transition of Sepiolite Under Moderate Pressure Conditions (천부지권 압력 하 해포석의 비등방적 압축 특성 및 상전이 연구)

  • Seohee, Yun;Yongjae, Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.423-430
    • /
    • 2022
  • Pressure-dependent elastic behavior and chemical reaction of natural sepiolite (Mg8Si12O30(OH)4·12H2O) was studied under two different pressure-transmitting medium (PTM) conditions using synchrotron X-ray powder diffraction. Under non pore-penetrating silicone oil PTM, we observed that the b-axis length increases up to ca. 3.6 GPa, marking an anisotropic compression region with negative linear compressibility of βb= -0.0012 GPa-1, which then decreases at 7.7 GPa. Under pore-penetrating water PTM, the anisotropic compression behavior is enhanced with doubled negative linear compressibility of βb= -0.0025 GPa-1 up to 3.2 GPa, where transformation into stevensite is observed upon ex-situ temperature treatment at 280 ℃ as confirmed via XRD and SEM. Derived bulk moduli (K0) and linear compressibilities (β) were compared to other structurally and chemically related minerals.

RANS simulation of secondary flows in a low pressure turbine cascade: Influence of inlet boundary layer profile

  • Michele, Errante;Andrea, Ferrero;Francesco, Larocca
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.415-431
    • /
    • 2022
  • Secondary flows have a huge impact on losses generation in modern low pressure gas turbines (LPTs). At design point, the interaction of the blade profile with the end-wall boundary layer is responsible for up to 40% of total losses. Therefore, predicting accurately the end-wall flow field in a LPT is extremely important in the industrial design phase. Since the inlet boundary layer profile is one of the factors which most affects the evolution of secondary flows, the first main objective of the present work is to investigate the impact of two different inlet conditions on the end-wall flow field of the T106A, a well known LPT cascade. The first condition, labeled in the paper as C1, is represented by uniform conditions at the inlet plane and the second, C2, by a flow characterized by a defined inlet boundary layer profile. The code used for the simulations is based on the Discontinuous Galerkin (DG) formulation and solves the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the Spalart Allmaras turbulence model. Secondly, this work aims at estimating the influence of viscosity and turbulence on the T106A end-wall flow field. In order to do so, RANS results are compared with those obtained from an inviscid simulation with a prescribed inlet total pressure profile, which mimics a boundary layer. A comparison between C1 and C2 results highlights an influence of secondary flows on the flow field up to a significant distance from the end-wall. In particular, the C2 end-wall flow field appears to be characterized by greater over turning and under turning angles and higher total pressure losses. Furthermore, the C2 simulated flow field shows good agreement with experimental and numerical data available in literature. The C2 and inviscid Euler computed flow fields, although globally comparable, present evident differences. The cascade passage simulated with inviscid flow is mainly dominated by a single large and homogeneous vortex structure, less stretched in the spanwise direction and closer to the end-wall than vortical structures computed by compressible flow simulation. It is reasonable, then, asserting that for the chosen test case a great part of the secondary flows details is strongly dependent on viscous phenomena and turbulence.

Experimental assessment of thermal radiation effects on containment atmospheres with varying steam content

  • R. Kapulla;S. Paranjape;U. Doll;E. Kirkby;D. Paladino
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4348-4358
    • /
    • 2022
  • The thermal-hydraulics phenomena in a containment during an accident will necessarily include radiative heat transfer (i) within the gas mixture due to the high radiative absorption and emission of steam and (ii) between the gas mixture and the surrounding structures. The analysis of some previous PANDA experiments (PSI, Switzerland) demonstrated the importance of the proper modelling of radiation for the benefit of numerical simulations. These results together with dedicated scoping calculations conducted for the present experiments indicated that the radiative heat transfer is considerable, even for a very low amount of steam (≈2%). The H2P2 series conducted in the large-scale PANDA facility at the Paul-Scherrer-Institut (PSI) in the framework of the OECD/NEA HYMERES-2 project is intended to enhance the understanding of thermal radiation phenomena and to provide a benchmark for corresponding numerical simulations. Thus, the test matrix was tailored around the two opposite extremes: either gas compositions with small steam content such that radiative heat transfer phenomena can be neglected. Or gas mixtures containing larger amounts of steam, so that radiative heat transfer is expected to play a dominant role. The H2P2 series consists of 5 experiments designed to isolate the radiation phenomena from convective and diffusive effects as much as possible. One vessel with a diameter of 4 m and a height of 8 m was preconditioned with different mixtures of air / steam at room and elevated temperatures. This was followed by the build-up of a stable helium stratification at constant pressure in the upper part of the vessel. After that, helium was injected from the top into the vessel which leads to an increase of the vessel pressure and a corresponding elevation-dependent and transient rise of the gas temperature. It is shown that even the addition of small amounts of steam in the initial gas atmosphere considerably impacts the radiative heat transport throughout all phases of the experiments and markedly influences i) the monitored gas peak temperature, ii) the temperature history during the compression and iii) the following relaxation phase after the compression was stopped. These PANDA experiments are the first of its kind conducted in a large scale thermal-hydraulic facility.

Alternative Immunossays

  • Barnard, G.J.R.;Kim, J.B.;Collins, W.P.
    • Korean Journal of Animal Reproduction
    • /
    • v.9 no.2
    • /
    • pp.133-139
    • /
    • 1985
  • An immunoassay may be defined as an analytical procedure involving the competitive reaction between a limiting concentration of specific antibody and two populations of antigen, one of which is labelled or immobillized. The advent of immunoassay has revolutionised our knowledge of reproductive physiology and the practice of veterinary and clinical medicine. Radioimmunoassay (RIA) was the first of these methods to be developed, which meausred the analyte with good sensitivity, accuracy and precision (1,2). The essential components of RIA are:-(i) a limited concentration of antibodies, (ii) a reference preparation, and (iii) an antigen labelled with a radioisotope (usually tritium or iodine-125). Most procedures invelove isolating the antibody-bound fraction and measuring the amount of labelled antigen. Good facilities are available for scintilltion counting, data reduction nd statistical analysis. RIA is undergoing refinement through:-(i) the introduction of new techniques to separate the antibody-bound and free fractions which minimize the misclassification of labelled antigen into these compartments, and the amount of non-specfic binding. (3), (ii) the development of non-extration for the measurement of haptens (4), (iii) the determination of a, pp.rent free (i.e. non-protein bound) analytes (5), and (iv) the use of monoclonal antibodies(6). In 1968, Miles and Hales introduced in important new type of immunoassay which they termed immunora-diometric assay (IRMA) based on t도 use of isotopically labelled specific antibodies(7) in a move from limited to excess reagent systems. The concept of two-site IRMAs (with a capture antibody on a solid-phase, and a second labelled antibody to a different antigenic determinant of the analyte) has enabled the development of more sensitive and less-time consuming methods for the measurement of protein hormones ovar wide concentration of analyte (8). The increasing use of isotopic methos for diverse a, pp.ications has exposed several problems. For example, the radioactive half-life and radiolysis of the labelled reagent limits assay sensitivity and imposes a time limit on the usefulness of a kit. In addition, the potential health hazards associated with the use and disposal of radioactive cmpounds and the solvents and photofluors necessary for liquid scientillation counting are incompatable with the development of extra-laboratory tests. To date, the most practical alternative labels to radioisotopes, for the measurement of analytes in a concentration > 1 ng/ml, are erythrocytes, polystyrene particiles, gold sols, dyes and enzymes or cofactors with a visual or colorimetric end-point(9). Increased sensitivity to<1 pg/ml may be obtained with fluorescent and chemiluminescent labels, or enzymes with a fluorometric, chemiluminometric or bioluminometric end-point. The sensitivity of any immunoassay or immunometric assay depends on the affinity of the antibody-antigen reaction, the specific activity of the label, the precision with which the reagents are manipulated and the nonspecific background signal (10). The sensitivity of a limited reagent system for the measurement of haptens or proteins is mainly dependent upon the affinity of the antibodies and the smalleest amount of reagent that may be manipulated. Consequently, it is difficult in practice to improve on the sensitivity obtained with iodine-125 as the label. Conversely, with excess reagent systems for the measurement of proteins it is theoretically possible to increase assay sensitivity at least 1000 fold with alternative luminescent labels. To date, a 10-fold improvement has been achieved, and attempts are being made to reduce the influence of other variables on the specific signal from the immunoreaction.

  • PDF

Anti-Oxidative Effects of Cymbopoton Citratus Ethanol Extract through the Induction of HO-1 Expression in RAW 264.7 Cells (RAW264.7 세포에서 Cymbopogon Citratus 에탄올 추출물의 HO-1 유도를 통한 항산화 효과)

  • Chung-Mu Park;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.4
    • /
    • pp.73-82
    • /
    • 2023
  • Purpose : Cymbopogon citratus, also known as lemongrass, has widely spread around the world and its essential oil is usually applied in food, perfume, and other industrial purposes. In addition, C. citratus has also been used for the treatment of inflammation, digestive disorders, and diabetes in traditional medicine. In this study, the antioxidative activity of C. citratus ethanol extract (CCEE) was analyzed in RAW 264.7 cells through the induction of one of phase II enzymes, heme oxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor (Nrf)2, mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/Akt. Methods : The antioxidative activity of CCEE against oxidative stress and its underlying molecular mechanisms were analyzed by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results : The results exhibited that CCEE potently attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS levels in a dose-dependent manner without any cytotoxicity. CCEE treatment significantly induced the expression of HO-1 which is known for its antioxidative capacity. In addition, CCEE treatment significantly upregulated the expression of Nrf2, a corresponding transcription factor for the regulation of antioxidative enzymes, which was in accordance with the HO-1 overexpression. MAPK and PI3K/Akt were also evaluated for their important roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, the potent HO-1 expression was mediated by not extracellular regulated kinase (ERK), c-Jun NH2 terminal kinase (JNK), p38, but phosphoinositide 3-kinase (PI3K) phosphorylation. To confirm the antioxidative activity of CCEE-induced HO-1 expression, oxidative damage was initiated by t-BHP and attenuated by CCEE treatment, which was identified by HO-1 selective inhibitor and inducer. Conclusion : Consequently, CCEE potently induced the HO-1-mediated antioxidative potential through the modulation of Nrf2 and PI3K/Akt signaling pathways in RAW 264.7 cells. These results suggest that CCEE could be a promising strategy for the mitigation against cellular oxidative damage.

Enhanced Antioxidative Potential by Silymarin Treatment through the Inductionof Nrf2/MAPK Mediated HO-1 Signaling Pathway in RAW 264.7 Cells (RAW 264.7 세포에서 Nrf2/MAPK 의 활성을 통한 HO-1 과발현에 의한 silymarin의 항산화 효과)

  • Hyun-Seo Yoon;Hyun An;Chung Mu Park
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.776-782
    • /
    • 2023
  • Silymarin, which is derived from dried Silybum marianum (milk thistle) seeds and fruits, possesses various beneficial properties, such as hepatoprotective, antioxidative, anti-inflammatory, and anticancer activity. This research aimed to explore the antioxidative activity of silymarin against oxidative stress and understand its molecular mechanism in RAW 264.7 cells. The study employed cell viability and reactive oxygen species (ROS) formation assays and western blot analysis. The results demonstrated that silymarin effectively reduced intracellular ROS levels induced by lipopolysaccharide (LPS) in a dose-dependent manner without causing any cytotoxic effects. Moreover, silymarin treatment significantly upregulated the expression of heme oxygenase (HO)-1, a phase II enzyme known for its potent antioxidative activity. Additionally, silymarin treatment significantly induced the expression of nuclear factor-erythroid 2 p45-related factor (Nrf) 2, a transcription factor responsible for regulating antioxidative enzymes, which was consistent with the upregulated HO-1 expression. To investigate the involvement of key signaling pathways in maintaining cellular redox homeostasis against oxidative stress, the phosphorylation status of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) was estimated by western blot analysis. The results showed that silymarin potently induced HO-1 expression, which was mediated by the phosphorylation of p38 MAPK. To further validate the antioxidative potential of silymarin-induced HO-1 expression, tert-butyl hydroperoxide (t-BHP)-induced oxidative damage was employed and attenuated by silymarin treatment, as identified by a selective inhibitor for each signaling molecule. In conclusion, silymarin robustly enhanced antioxidative activity by inducing HO-1 via the Nrf2/p38 MAPK signaling pathway in RAW 264.7 cells.

β-elemene Induces Caspase-dependent Apoptosis in Human Glioma Cells in vitro through the Upregulation of Bax and Fas/FasL and Downregulation of Bcl-2

  • Li, Chen-Long;Chang, Liang;Guo, Lin;Zhao, Dan;Liu, Hui-Bin;Wang, Qiu-Shi;Zhang, Ping;Du, Wen-Zhong;Liu, Xing;Zhang, Hai-Tao;Liu, Yang;Zhang, Yao;Xie, Jing-Hong;Ming, Jian-Guang;Cui, Yu-Qiong;Sun, Ying;Zhang, Zhi-Ren;Jiang, Chuan-Lu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10407-10412
    • /
    • 2015
  • Background: ${\beta}$-elemene, extracted from herb medicine Curcuma wenyujin has potent anti-tumor effects in various cancer cell lines. However, the activity of ${\beta}$-elemene against glioma cells remains unclear. In the present study, we assessed effects of ${\beta}$-elemene on human glioma cells and explored the underlying mechanism. Materials and Methods: Human glioma U87 cells were used. Cell proliferation was determined with MTT assay and colony formation assay to detect the effect of ${\beta}$-elemene at different doses and times. Fluorescence microscopy was used to observe cell apoptosis with Hoechst 33258 staining and change of glioma apoptosis and cell cycling were analyzed by flow cytometry. Real-time quantitative PCR and Western-blotting assay were performed to investigated the influence of ${\beta}$-elemene on expression levels of Fas/FasL, caspase-3, Bcl-2 and Bax. The experiment was divided into two groups: the blank control group and ${\beta}$-elemne treatment group. Results: With increase in the concentration of ${\beta}$-elemene, cytotoxic effects were enhanced in the glioma cell line and the concentration of inhibited cell viability ($IC_{50}$) was $48.5{\mu}g/mL$ for 24h. ${\beta}$-elemene could induce cell cycle arrest in the G0/G1 phase. With Hoechst 33258 staining, apoptotic nuclear morphological changes were observed. Activation of caspase-3,-8 and -9 was increased and the pro-apoptotic factors Fas/FasL and Bax were upregulated, while the anti-apoptotic Bcl-2 was downregulated after treatment with ${\beta}$-elemene at both mRNA and protein levels. Furthermore, proliferation and colony formation by U87 cells were inhibited by ${\beta}$-elemene in a time and does-dependent manner. Conclusions: Our results indicate that ${\beta}$-elemene inhibits growth and induces apoptosis of human glioma cells in vitro. The induction of apoptosis appears to be related with the upregulation of Fas/FasL and Bax, activation of caspase-3,-8 and -9 and downregulation of Bcl-2, which then trigger major apoptotic cascades.

The Expression of Oncogenes on the Radiation-induced Apoptosis in SCK Mammary Adenocarcinoma Cell Line (SCK 선암세포주에서 방사선 조사에 의해 유도되는 Apoptosis에 미치는 암유전자의 발현)

  • Lee Hyung Sik;Park Hong Kyu;Moon Chang Woo;Yoon Seon Min;Hur Won Joo;Jeong Su Jin;Jeong Min Ho;Lee Sang Hwa
    • Radiation Oncology Journal
    • /
    • v.17 no.1
    • /
    • pp.70-77
    • /
    • 1999
  • Purpose : The expression of p53, P211WAF/CIP, Bcl-2, and Bax underlying the radiation-induced apoptosis in different pH environments using SCK mammary adenocarcinoma cell line was investigated. Materials and Methods Mammary adenocarcinoma cells of hi) mice (SCK cells) in exponential growth phase were irradiated with a linear accelerator at room temperature. The cells were irradiated with 12 Gy and one hour later, the media was replaced with fresh media at a different pHs. After Incubation at 37Microbioiogy, College of Medicine Dong A University for 0$\~$48 h, the extort of apoptosis was determined using agarose gel electrophoresis and flow cytometry. The progression of cells through the cell cycle after irradiation in different pHs was also determined with flow cytometry. Western blot analysis was used to monitor p53, p211WAFfCIP, Bcl-2, and Bu protein levels. Results : The induction of apoptosis by irradiation in pH 6.6 medium was markedly less than that in pH 7.5 medium. The radiation-induced G2IM arrest in pH 6.6 medium lasted markedly longer than that in pH 7.5 medium. Considerable amounts of p53 and p21 proteins already existed at pH 7.5 and increased the level of p53 and p21 significantly after 12 Gy X-irradiation. An incubation at pH 6.6 after 12 Gy X-irradiation did not change the level of p53 and p21 protein levels significantly. Bcl-2 proteins were not significantly affected by radiation and showed no correlation with cell susceptibility to radiation-induced apoptosis in different pHs. An exposure to 12 Gy of X-rays increased the level of Bax protein at pH 7.5 but at pH 6.6, it was slight. Conclusions : The molecular mechanism underlying radiation-induced apoptosis in dinerent pH environments using SCK mammary adenocarcinoma cell line was dependent of the expression p53 and P211YVAF/CIP proteins. We may propose following hypothesis that an acidic stress augments the radiation-induced G2iM arrest, which inhibiting the irradiated cells undergo post-mitotic apoptosis. The effects of environmental acidity on anti-apoptotic and pro-apoptotic function of Bcl-2 family was unclear in SCK mammary adenocarcinoma cell line.

  • PDF