• Title/Summary/Keyword: Phase variation

Search Result 2,040, Processing Time 0.025 seconds

A study on the torque characteristic of AC servo system by phase advance control (진상각 제어에 따른 AC 서보 모터의 토오크 특성에 관한 연구)

  • 임윤택;손명훈;허욱열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.393-400
    • /
    • 1992
  • The DC(Direct-Current) servo motor has widely used for many application areas, FA(Factory Automation), OA(Office Automation) and home applications. But DC servo motor needs periodical inspection because it has brush and commutator. Recently, AC servo motor has expanded it's application areas due to for the development of the power semi-conductor and control technology. But it has large torque ripple for it's small number of commutation. And it also has cogging torque due to permanent magenet rotor. Therefore it can't run balence rotarion. Many torque ripple reduction methods are published. In this paper, phase advanced method adopted for torque ripple reduction of AC servo motor. In this research, AC servo motor torque characteristic variation surveied under the phase advance control through the computer simulation. Under the simulation, the load inertia varied from 0.0001[Kg.m$^{2}$] to 0.0314[Kg.m$^{2}$]. The result os nonlinear simulation, torque and speed ripple of AC servo motor under the phase advance control reduced approximately 50[%] and 10[%]. And maximum torque of AC servo motor under phase advance control condition increased about 5[%] as compare with fixed switching time.

  • PDF

The variation of SCC resistance in duplex stainless steel weldment (이상계 스테인레스강 용접부의 응력부식균열에 관한 연구)

  • 김충언;강춘식;김희진
    • Journal of Welding and Joining
    • /
    • v.5 no.4
    • /
    • pp.36-46
    • /
    • 1987
  • The impact toughness and SCC resistance of duplex stainless steel weldment made by GTAW, GMAW and SMAW processes was studied. The impact toughness of GTA weld metal was higher than that of GMA weld metal which contained more ferrite phase than GTA weld metal. The impact toughness of SMA weld metal was the lowest due to the harmful effect of inclusions inspite of richness of more ductile austenite phase. From these facts, it can be concluded that the important factors determining the weld metal toughness were the amount of ferrite phase and the cleaness of weld metal. While the SCC resistance of SMA weld metal was lower than that of base metal and nay other weld metal, the SCC resistance of GMA and GTA weld metal was higher than that of base metal but that of all the HAZ's were lower than that of base metal. Therefore, the impact toughness and SCC resistance of GTA and GMA weldment was pretty good as long as phase ratio was propertly controlled. Although the phase ratio was controlled, SMA weld metal could not get a good combination because the lack of shielding from the environment results in a high content of inclusions in weld metal.

  • PDF

Optimal Trajectory Design of Descent/Ascent phase for a Lunar Lander With Considerable Sub-Phases (Sub-Phase를 고려한 달착륙선의 Descent/Ascent phase 최적 궤적 생성)

  • Jo, Sung-Jin;Min, Chan-Oh;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1184-1194
    • /
    • 2010
  • The descent and ascent phases for a lunar lander are composed of several phases. Accordingly, the constraints and control values adequate for each phase are required in order to generate optimal lander's trajectory. The optimal trajectories for descent and ascent phases are generated by the cost function to minimize fuel consumption & attitude variation rates. In this paper, the optimal control problem to make trajectory uses Gauss pseudo-spectral method which is one of the direct approach method. This problem generates lander's reference trajectory, states and controls.

Vortex Pairing and Jet-Spreading in an Axisymmetric Jet under Helical Fundamental and Axisymmetric Subharmonic Forcing (헬리컬 기본교란과 축대칭 분수조화교란을 이용한 원형제트에서의 보텍스 병합 및 제트확산)

  • Cho, Sung Kwon;Yoo, Jung Yul;Choi, Haecheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1610-1624
    • /
    • 1998
  • An axisymmetric jet is forced with two helical fundamental waves of identical frequency spinning in opposite directions and an additional axisymmetric sub harmonic wave. The subharmonic component rapidly grows downstream from subharmonic resonance with the fundamental, significantly depending on the initial phase difference. The variations of the subharmonic amplitude with the initial phase difference show cusp-like shapes. The amplification of the sub harmonic results in 'vortex pairing of helical modes'. Furthermore, azimuthal variation of the amplification induces an asymmetric jet cross-section. When the initial subharmonics is imposed with an initial phase difference close to a critical value, the jet-cross section evolves into a three-lobed shape. One lobe is generated by the enhanced vortex pairing and the other two lobes are generated by the delayed vortex pairing. Thus, it is confirmed that the initial phase difference between the fundamental and the subharmonic plays an important role in controlling the jet cross-section.

Radiation Effect to Each Phase of Morphology on a Low Density Polyethylene Irradiated to $C_0^{60}\gamma$. ray (Co$^{60}\gamma$.gamma.선이 저밀도 폴리에티렌의 각상에 미치는 조사효과)

  • 김봉흡;강도열;김재환
    • 전기의세계
    • /
    • v.23 no.5
    • /
    • pp.54-60
    • /
    • 1974
  • Proposals were mode on how to differentiate radiation effects in morphological phases of polyethylene and discussions were developed with the results obtained on a low density polyethylene, SOCAREX, specified by number average molecular weight; overbar Mn=5,400, density; 0.92, and degree of branch; 3.4/100 carbon atom, which was irradiated to Co$^{60}$ .gamma. ray at the dose rate of 0.5 Mrad/hr in ambient temperature under the pressure of 10$^{-5}$ Torr. or 1 atm. respectively. The effect to crystalline phase in possibly deduced from dose dependent variation of relative area between (110) and (200) peaks on X ray diffraction spectrum and that, the effects to amorphous phase can be understood through dose dependent relaxation behaviours of .betha. peak on internal friction characteristics of the specimen. The results obtained thus far indicate that, in crystalline phase, relative crystallinity shows a rather rapid decrease up to 20 Mrad with increasing dose, however, little change of crystallinity can be observed in the region between 20-200 Mrad, and degradation appears to be more predominant than crosslinking up to 60 Mrad. While in amorphous phase the indication also shows that degradation is only predominant up to 20 Mrad. Furthermore several correlations can be seen with amenable explanation between dose dependent behaviours observed in both phases.

  • PDF

Unsteady Lift Measurements of the Dragonfly-type Wing (잠자리 유형 날개의 비정상 양력 측정)

  • Kim, Song-Hak;Jang, Jo-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • Unsteady lift measurements were carried out in order to investigate the effects of phase difference and reduced frequency of a dragonfly-type model with two pairs of wing. A load-cell was employed to measure the lift generated by a plunging motion of the dragonfly-type model with the incidence angles of 0$^{circ}$. Experimental conditions are as follows: phase differences between fore- and hind-wings are 0$^{circ}$, 90$^{circ}$, 180$^{circ}$, and 270$^{circ}$, and reduced frequencies are 0.075, 0.15 and 0.225, respectively. The freestream velocity was 143 m/sec and corresponding chord Reynolds number was $3.4{\times}10^3$. The variation of phase-averaged lift coefficients during one cycle of the wing motion is presented. Results show that the total value of the positive lift coefficient during one cycle of the wing motion is the largest at the phase difference of 90$^{circ}$, and that the maximum lift coefficient and lift coefficient per unit of time increases with reduced frequency.

  • PDF

The finite difference analysis on temperature distribution by coordinate transformation during melting process of phase-change Material (상변화 물질의 용융과정에 있어서 좌표변환을 이용한 온도분포의 해석적 연구)

  • Kim, J.K.;Yim, J.S.
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 1985
  • An analysis is performed to investigate the influence of the buoyancy force and the thickness variation of melting layer in the containment that is filled with phase-change Material surrounding a cylindrical heating tube during melting process. The phase-change material is assumed to be initially solid at its phase-change temperature and the remaining solid at any given time is still at the phase-change temperature and neglecting the effect of heat transfer occuring within the solid. At the start of melting process, the thickness of melting layer is assumed to be a stefan-problem and after the starting process, the change of temperature and velocity is calculated using a two dimensional finite difference method. The governing equations for velocity and temperature are solved by a finite difference method which used SIMPLE (Semi Implicit Method Pressure linked Equations) algorithm. Results are presented for a wide range of Granshof number and in accordance with the time increment and it is founded that two dimensional fluid flow occurred by natural convection decreases the velocity of melting process at the bottom of container. The larger the radius of heating tube, the higher heat transfer is occurred in the melting layer.

  • PDF

A Study on the High Temperature Deformation and the Cavity Initiation of Gamma TiAl Alloy ($\gamma$-TiAl 합금의 고온변형 및 Cavity 형성 연구)

  • Kim J. H.;Ha T. K.;Chang Y. W.;Lee C. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.172-175
    • /
    • 2001
  • The high temperature deformation behavior of two-phase gamma TiAl alloy has been investigated with the variation of temperature and ${\gamma}/{\alpha}_2$ volume fraction. For this purpose, a series of load relaxation tests and tensile tests have been conducted at temperature ranging from 800 to $1050^{\circ}C$. In the early stage of the deformation as in the load relaxation test experimental flow curves of the fine-grained TiAl alloy are well fitted with the combined curves of two processes (grain matrix deformation and dislocation climb) in the inelastic deformation theory. The evidence of grain boundary sliding has not been observed at this stage. However, when the amount of deformation is large (${\epsilon}{\approx}$ 0.8), flow curves significantly changes its shape indicating that grain boundary sliding also operates at this stage, which has been attributed to the occurrence of dynamic recrystallization during the deformation. With the increase in the volume fraction of ${\alpha}_2$-phase, the flow stress for grain matrix deformation increases since ${\alpha}_2$-Phase is considered as hard phase acting as barrier for dislocation movement. It is considered that cavity initiation is more probable to occur at ${\alpha}_2/{\gamma}$ interface rather than at ${\gamma}/{\gamma}$ interface.

  • PDF

A Study on the Design of Single Phase LSPM Considering the Irreversible Demagnetization of Permanent Magnet (불가역 감자를 고려한 단상 LSPM 설계에 관한 연구)

  • Jung, Dae-Sung;Go, Sung-Chul;Park, Hyun-June;Kwon, Sam-Young;Lee, Hyung-Woo;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2186-2193
    • /
    • 2008
  • The growth on consideration of energy savings and motor efficiency has caused the LSPM(Line Start Permanent Magnet Motor) to be focused as a substitute for conventional induction motors. A Line start permanent magnet motor able to be driven at synchronous speed is designed based on a single phase induction motor in this paper. The single phase LSPM is identical to the induction motor except a permanent magnet is installed in the rotor. As the permanent magnet influences the characteristics of both transient state and steady state, a design considering both starting and synchronization conditions was used. In this paper, by adopting DOE, a single phase motor has been designed showing high power and smooth start. Also, optimal model is selected by weighting function. And the characteristics demagnetization are analyzed according to the variation of magnet shape. Finally, to verify the design results, a prototype was measured.

Phase criterion of the feedback cycle of edgetones (쐐기소리의 되먹임 사이클의 위상조건)

  • Gwon, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1106-1113
    • /
    • 1996
  • The phase criterion of the feedback cycle of low-speed edgetones has been obtained using the jet-edge interaction model which is based on the substitution of an array of dipoles for the reaction of the wedge to the impinging jet. The edgetone is produced by the feedback loop between the downstream-convected sinuous disturbance and upstream-propagating waves generated by the impingement of the disturbance on the wedge. By estimation of the phase difference between the downstream and the upstream disturbances, the relationship between the edge distance and the wavelength is obtained according to the phase-locking condition at the nozzle lip. With a little variation depending on the characteristics of jet-edge interaction, the criterion can be approximated as follows: h/.LAMBDA. + h/.lambda. = n - 1/4, where h is the stand-off distance between the nozzle lip and the edge tip, .LAMBDA. is the wavelength of downstream-convected wave, .lambda. is the wavelength of the upstream-propagating acoustic wave and n is the stage number for the ladder-like characteristics of frequency. The present criterion has been confirmed by estimating wavelengths from available experimental data and investigating their appropriateness. The above criterion has been found to be effective up to 90.deg. of wedge angle corresponding to the cavitytones.