Browse > Article
http://dx.doi.org/10.5139/JKSAS.2010.38.12.1184

Optimal Trajectory Design of Descent/Ascent phase for a Lunar Lander With Considerable Sub-Phases  

Jo, Sung-Jin (부산대학교 항공우주공학과 대학원)
Min, Chan-Oh (부산대학교 항공우주공학과 대학원)
Lee, Dae-Woo (부산대학교 항공우주공학과)
Cho, Kyeum-Rae (부산대학교 항공우주공학과)
Publication Information
Journal of the Korean Society for Aeronautical & Space Sciences / v.38, no.12, 2010 , pp. 1184-1194 More about this Journal
Abstract
The descent and ascent phases for a lunar lander are composed of several phases. Accordingly, the constraints and control values adequate for each phase are required in order to generate optimal lander's trajectory. The optimal trajectories for descent and ascent phases are generated by the cost function to minimize fuel consumption & attitude variation rates. In this paper, the optimal control problem to make trajectory uses Gauss pseudo-spectral method which is one of the direct approach method. This problem generates lander's reference trajectory, states and controls.
Keywords
Lunar lander; Descent and ascent phase; Optimal trajectory design; Gauss pseudo-spectral;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 주광혁, 노웅래, 이상률, “ 한국형발사체를 발사능력을 고려한 달착륙선 설계기술 분석”, 한국항공우주학회 추계학술 발표회, 2008, KSAS08-2.
2 조성진, 민찬오, 이대우, " 한국형 달착륙선의 착륙과 이륙의 최적경로 생성", 한국항공우주학회 춘계학술 발표회, 2010, KSAS10-1.
3 Boyoung Jeong, Donghun Lee, Hyochoong Bang, "Optimal Perilune Altitude of Lunar Landing Trajectory", Int'l J. of Aeronautical & Space science, Vol. 10, No. 1, May 2009, pp. 67-74.   과학기술학회마을   DOI   ScienceOn
4 R. V. Ramanan, M. Lal, "Analysis of optimal strategies for soft landing on the Moon from lunar parking orbits", Journal of Earth System Science, Vol. 114, No. 6, 2005, pp. 807-813.   DOI
5 X. Liu, G. Duan, "Nonlinear optimal control for the soft landing of lunar lander", Systems and Control in Aerospace and Astronautics, pp. 1381-1387, 2006.
6 Bong-gyun Park, Dae-kyu Sang, Min-Jea Tahk, "Direct Trajectory Optimization of a soft lunar Landing Considering a Landing site", 2009, IAC09.C1.1.10.
7 C. A. Kluever, B. L. Peirson, "OPtimal Low-Thrust Three-Dimensional Earth-Moon Trajectories", Journal of Guidance, Control, and Dynamics, Vol. 19, No. 4, July-August 1995, pp. 830-837.
8 A. E. Bryson, Yu-Chi. Ho, "Applied Optimal Control", Harvard University, 1975.
9 Rao, A. V., "User's Manual for GPOCS Version 1.0", Gainesville, FL32607, 2007, pp. 1-60.
10 D. E. Kirk, "Optimal Control Theory", Dover Publications, 1970.
11 F. V. Bennett, T. G. Price, "Study of Powered-Descent Trajectories for Manned Lunar Landings", NASA Technical Note D-2426, Johnson Spacecraft Center Huston, Tex. August 1964.
12 R. R. Sostaric, "Lunar Ascent and Rendezvous Trajectory Design", 31th Annual AAS Guidance and Control Conference, February, 2008.
13 David A. Benson, "Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method", Journal of Guidance, Control, and Dynamics, Vol. 29, No. 6, July-August 1995, pp. 830-837.
14 J. D. Alexander, R. W. Becker, "Apollo Experience Report - Evolution of the Rendezvous-Maneuver Plan for Lunar Landing Mission", NASA Technical Note D-7388, Johnson Spacecraft Center Huston, Tex. August 1973.
15 F. V. Bennett, "Apollo Experience Report-Mission Planning for Lunar Module Descent and Ascent", NASA Technical Note D-6846, Johnson Spacecraft Center Huston, Tex. June 1972.
16 R. R. Sostaric, "Powered Descent Trajectory Guidance and Some Considerations for Human Lunar Landing", 30th Annual AAS Guidance and Control Conference, February, 2007.