• Title/Summary/Keyword: Phase transfer catalysts

Search Result 29, Processing Time 0.04 seconds

Optimum Ratio between Nafion and 20, 40 wt% Pt/C Catalysts for MEAs (20, 40 wt% Pt/C 촉매를 사용한 MEA제조에서 나피온의 최적비)

  • Jung, Ju-Hae;Jung, Dong-Won;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.50-55
    • /
    • 2011
  • To enhance the performance of a MEA (membrane electrode assembly) in a polymer electrolyte membrane fuel cell (PEMFC), optimum contents of Nafion ionomer as electrolyte in the 20 and 40 wt% Pt/C used in electrodes were examined. Variety characterization techniques were applied to examine optimum Nafion contents: cell performance test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). According to Pt wt% supported on carbon support, it has been observed that polarization, ohmic, and mass transfer resistances were changed so that the cell performance was significantly dependent on the content of Nafion ionomer. Optimum Nafion ionomer contents in the 20 wt% Pt/C and 40 wt% Pt/C were showed 35 wt% and 20 wt%, respectively. This is due to different surface area of the Pt/C catalyst, and formation of triple phase boundary seems to be affected by the Nafion contents.

Development of diverse fluorides source for applicable F-18 radiofluorination method

  • Park, Su Hong;Kim, Dong Wook
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.1
    • /
    • pp.17-21
    • /
    • 2016
  • Alkali metal fluoride sources (MFs) such as potassium fluoride (KF) have been widely used as a fluoride source in the nucleophilic displacement reaction. However, they have low solubility and nucleophilicity in most of the organic solvents. Bulky fluoride sources such as tetrabutylammonium fluoride (TBAF) were substituted for MFs to improve these properties. However, hygroscopic property of TBAF makes it less convenient for handling as well as its strong basic property can make the side-reaction occur. Recently, novel fluoride sources have been developed to solve these problems. In this paper, we would like to introduce coordinated fluoride sources as a new fluoride sources such as tetrabutylammonium tetra(t-butyl alcohol)-coordinated fluoride, crown ether metal complex fluoride, and various bulky alcohols coordinated fluoride complexes. In particular, bulky alcohol coordinated fluoride source could generated by the controlled hydrogen-bonded of fluoride with alcohols and these fluoride sources have better stability and reactivity with showing low hygroscopic property. The study of these fluoride sources will help to understand the characteristic of [$^{18}F$]fluoride for increasing the radiochemical yield in the [$^{18}F$]radiofluorination.

Esterification of High Concentration Free Fatty Acid in Rice Bran Oil (미강유 중 고농도 자유지방산의 에스테르화)

  • Shin, Yong-Seop
    • Journal of Environmental Science International
    • /
    • v.17 no.2
    • /
    • pp.211-224
    • /
    • 2008
  • Characteristics of the esterification reaction between free fatty acid in rice bran oil and methanol was investigated in the presence of catalysts, such as PTS(p-toluene sulfonic acid), Amberlyst 15 dry and SCX(silica gel based strong cation exchange resin). While reaction temperature was kept constant at $65^{\circ}C$, initial feed content of free fatty acid was varied from 100% to 1% by addition of pure free fatty acid which was previously made from rice bran oil. Also, the effect of mole ratio of methanol to fatty acid on the final conversion was examined. When esterification of pure free fatty acid was catalyzed by several acids, final conversions were increased in order of Amberlyst 15 dry, SCX and PTS. Using PTS catalyst, initially the reaction proceeded in homogeneous 2nd oder reaction mechanism. However, phase of reaction mixture changed from homogeneous to heterogeneous along the reaction time and then reaction rate was retarded by mass transfer resistance of methanol. Final conversion of free fatty acid in reaction mixture was depended on initial feed content of free fatty acid, and had maximum value at 30% of initial feed free fatty acid content for all kinds of catalysts used. And the final conversion was increased with mole ratio of methanol by the improvement of reaction rate. When initial feed free fatty acid content below 10% and the reaction was catalyzed by PTS, concentration of free fatty acid in reaction mixture was increased in the middle of reaction time by hydrolysis of triglyceride in reaction mixture. Also, if silica gel was added into the reaction mixture which had initial feed free fatty acid content below 50%, final conversion was increased by the adsorption of moisture produced. The SCX catalyst made the esterification reaction of free fatty acid to progress like in case of PTS catalyst. However, when initial feed free fatty acid content below 10%, concentration of free fatty acid in. reaction mixture was decreased monotonically and not increased in the middle of reaction time on the contrary to the case of PTS. Thus, SCX catalyst accomplished more high value of final conversion than PTS catalyst for the initial feed fatty acid content range from 50% to 5% In case of initial feed free fatty acid content of 1% and mole ratio of methanol was 2, concentration of free fatty acid in reaction mixture increased over the initial feed free fatty acid content for all kind of catalysts used. Although SCX catalyst was added into reaction mixture which had 1% of initial feed fatty acid content, final conversion was hardly raised by mole ratio of methanol.

Silver nanowires and nanodendrites synthesized by plasma discharge in solution for the catalytic oxygen reduction in alkaline media

  • Kim, Hoe-Geun;Song, Myeon-Gyu;Kim, Dong-U;Lee, Sang-Yul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.62-62
    • /
    • 2018
  • Pt is still considered as one of the most active electrocatalysts for ORR in alkaline fuel cells. However, the high cost and scarcity of Pt hamper the widespread commercialization of fuel cells. As a strong candidate for the replacement of Pt catalyst, silver (Ag) has been extensively studied due to its high activity, abundance, and low cost. Ag is more stable than Pt in the pH range of 8~14 as the equilibrium potential of Ag/Ag+ being ${\approx}200mV$ higher than that of Pt/PtO. However, Ag is the overall catalytic activity of Ag for oxygen reduction reaction(ORR) is still not comparable to Pt catalyst since the surface Ag atoms are approximately 10 times less active than Pt atoms. Therefore, further enhancement in the ORR activity of Ag catalysts is necessary to be competitive with current cutting-edge Pt-based catalysts. We demonstrate the architectural design of Ag catalysts, synthesized using plasma discharge in liquid phase, for enhanced ORR kinetics in alkaline media. An attractive feature of this work is that the plasma status controlled via electric-field could form the Ag nanowires or dendrites without any chemical agents. The plasma reactor was made of a Teflon vessel with an inner diameter of 80 mm and a height of 80 mm, where a pair of tungsten(W) electrodes with a diameter of 2 mm was placed horizontally. The stock solutions were made by dissolving the 5-mM AgNO3 in DI water. For the synthesis of Agnanowires, the electricfield of 3.6kVcm-1 in a 200-ml AgNO3 aqueous solution was applied across the electrodes using a bipolar pulsed power supply(Kurita, Seisakusyo Co. Ltd). The repetition rate and pulse width were fixed at 30kHz and 2.0 us, respectively. The plasma discharge was carried out for a fixed reaction time of 60 min. In case of Ag nanodendrites, the electric field of 32kVcm-1 in a 200-ml AgNO3 aqueous solution was applied and other conditions were identical to the plasma discharge in water in terms of electrode configuration, repetition rate and discharge time. Using SEM and STEM, morphology of Ag nanowires and dendrites were investigated. With 3.6 kV/cm, Ag nanowire was obtained, while Ag dendrite was constructed with 32 kV/cm. The average diameter and legth of Ag nanowireses were 50 nm and 3.5 um, and thoes values of Ag dendrites were 40 nm and 3.0 um. As a results of XPS analysis, the surface defects in the Ag nanowires facilitated O2 incorporation into the surface region via the interaction between the oxygen and the electron cloud of the adjacent Ag atoms. The catalytic activity of Ag for oxygen reduction reaction(ORR) showed that the catalytic ORR activity of Ag nanowires are much better than Ag nanodendrites, and electron transfer number of Ag nanowires is similar to that of Pt (${\approx}4$).

  • PDF

Continuous Wet Oxidation of TCE over Supported Metal Oxide Catalysts (금속산화물 담지촉매상에서 연속 습식 TCE 분해반응)

  • Kim, Moon Hyeon;Choo, Kwang-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.206-214
    • /
    • 2005
  • Heterogeneously-catalyzed oxidation of aqueous phase trichloroethylene (TCE) over supported metal oxides has been conducted to establish an approach to eliminate ppm levels of organic compounds in water. A continuous flow reactor system was designed to effect predominant reaction parameters in determining catalytic activity of the catalysts for wet TCE decomposition as a model reaction. 5 wt.% $CoO_x/TiO_2$ catalyst exhibited a transient period in activity vs. on-stream time behavior, suggesting that the surface structure of the $CoO_x$ might be altered with on-stream hours; regardless, it is probable to be the most promising catalyst. Not only could the bare support be inactive for the wet decomposition reaction at $36^{\circ}C$, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Very low TCE conversion appeared for $TiO_2$-supported $NiO_x$ and $CrO_x$ catalysts. Wet oxidation performance of supported Cu and Fe catalysts, obtained through an incipient wetness and ion exchange technique, was dependent primarily on the kinds of the metal oxides, in addition to the acidic solid supports and the preparation routes. 5 wt.% $FeO_x/TiO_2$ catalyst gave no activity in the oxidation reaction at $36^{\circ}C$, while 1.2 wt.% Fe-MFI was active for the wet decomposition depending on time on-stream. The noticeable difference in activity of the both catalysts suggests that the Fe oxidation states involved to catalytic redox cycle during the course of reaction play a significant role in catalyzing the wet decomposition as well as in maintaining the time on-stream activity. Based on the results of different $CoO_x$ loadings and reaction temperatures for the decomposition reaction at $36^{\circ}C$ with $CoO_x/TiO_2$, the catalyst possessed an optimal $CoO_x$ amount at which higher reaction temperatures facilitated the catalytic TCE conversion. Small amounts of the active ingredient could be dissolved by acidic leaching but such a process gave no appreciable activity loss of the $CoO_x$ catalyst.

Deactivation and Regeneration of a Used De-NOx SCR Catalyst for Wastes Incinerator (소각로 SCR 폐탈질 촉매의 피독과 효율재생에 관한 연구)

  • Lee, Sang-Jin;Hong, Sung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.259-263
    • /
    • 2008
  • The catalytic activity of the used catalyst, $V_2O_5/TiO_2$, for MSW incinerators was investigated focusing on its regeneration. As the result of the experimental analysis, the NOx removal efficiency difference between the fresh catalyst and used catalyst is about 60% at $260^{\circ}C$ and 1, 2-dichlorobenzen (1, 2-DCB) removal efficiency difference is about 14% at $200^{\circ}C$, in honeycomb test. And the catalysts, both the fresh and used, were characterized by XRD, TGA, and ICP techniques in order to investigate the deactivation. On the basis of the results, it is found that the used catalyst is deactivated by ammonium-sulfates, heavy metals (Pb, As etc.), alkali metals (Ca), and phase transfer of $TiO_2$. Also calcination treatment under nitrogen and air condition was excellent than washing and calcination treatment.

On-stream Activity and Surface Chemical Structure of CoO2/TiO2 Catalysts for Continuous Wet TCE Oxidation (습식 TCE 분해반응에서 CoO2/TiO2 촉매의 반응활성 및 표면화학적 구조)

  • Kim Moon Hyeon;Choo Kwang-Ho
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.221-230
    • /
    • 2005
  • Catalytic wet oxidation of trichloroethylene (TCE) in water has been conducted using $TiO_2-supported$ cobalt oxides at $36^{\circ}C$ with a weight hourly space velocity of $7,500\;h^{-1}.\;5\%\;CoO_x/TiO_2$, prepared by using an incipient wetness technique, might be the most promising catalyst for the wet oxidation although it exhibited a transient behavior in time on-stream activity. Not only could the bare support be inactive for the wet decomposition reaction, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. XPS spectra of both fresh and used Co surfaces gave different surface spectral features for each $CoO_x,\;Co\;2P_{3/2}$ binding energy for Co species in the fresh catalyst appeared at 781.3 eV, which is very similar to the chemical states of $CoTiO_x$ such as $CO_2TiO_4\;and\;CoTiO_3$. The used catalyst exhibited a 780.3-eV main peak with a satellite structure at 795.8 eV. Based on XPS spectra of reference Co compound, the TCE-exposed Co surfaces could be assigned to be in the form of mainly $Co_3O_4$. XRD patterns for $5\%\;CoO_x/TiO_2$ catalyst indicated that the phase structure of Co species in the catalyst even before reaction is quite comparable to the diffraction lines of external $Co_3O_4$ standard. A model structure of $CoO_x$ present predominantly on titania surfaces would be $Co_3O_4$, encapsulated in thin-film $CoTiO_x$ species consisting of $Co_2TiO_4$ and $CoTiO_3$, which may be active for the decomposition of TCE in a flow of water.

Heterogeneous Oxidation of Liquid-phase TCE over $CoO_x/TiO_2$ Catalysts (액상 TCE 제거반응을 위한 $CoO_x/TiO_2$ 촉매)

  • Kim, Moon-Hyeon;Choo, Kwang-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.253-261
    • /
    • 2005
  • Catalytic wet oxidation of ppm levels of trichloroethylene (TCE) in water has been conducted using $TiO_2$-supported cobalt oxides at a given temperature and weight hourly space velocity. 5% $CoO_x/TiO_2$ might be the most promising catalyst for the wet oxidation at $36^{\circ}C$ although it exhibited a transient behavior in time on-stream activity. Not only could the bare support be inactive for the wet decomposition reaction, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Characterization of the $CoO_x$ catalyst by acquiring XPS spectra of both fresh and used Co surfaces gave different surface spectral features of each $CoO_x$. Co $2p_{3/2}$ binding energy of Co species exposed predominantly onto the outermost surface of the fresh catalyst appeared at 781.3 eV, which is very similar to the chemical states of $CoTiO_x$ such as $Co_2TiO_4$ and $CoTiO_3$. The spent catalyst possessed a 780.3 eV main peak with a satellite structure at 795.8 eV. Based on XPS spectra of reference Co compound, the TCE-exposed Co surfaces could be assigned to be in the form of mainly $Co_3O_4$. XRD measurements indicated that the phase structure of Co species in 5% $CoO_x/TiO_2$ catalyst even before reaction is quite comparable to the diffraction lines of external $Co_3O_4$ standard. A model structure of $CoO_x$ present on titania surfaces would be $Co_3O_4$, encapsulated in thin-film $CoTiO_x$ species consisting of $Co_2TiO_4$ and $CoTiO_3$, which may be active for the decomposition of TCE in a flow of water.

Simultaneous Oxidation of NO, CO, and CH4 over Mn-Cu/Al2O3 Catalyst (Mn-Cu/Al2O3 촉매 상에서 NO, CO 및 CH4 동시 산화)

  • Ji Eun Jeong;Chang-Yong Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Mn-M/Al2O3 (M = Cu, Fe, Co, and Ce) catalysts were prepared for simultaneous oxidation of NO, CO, and CH4, and their oxidation activities were compared. The Mn-Cu/ Al2O3 catalyst with the best simultaneous oxidation activity was characterized by XRD, Raman, XPS, and O2-TPD analysis. The result of XRD indicated that Mn and Cu existed as complex oxides in the Mn-Cu/Al2O3 catalyst. Raman and XPS results showed that electron transfer between Mn ions and Cu ions occurred during the formation of the Mn-O-Cu bond in the Mn-Cu/Al2O3 catalyst. The XPS O 1s and O2-TPD analyses showed that the Mn-Cu/Al2O3 catalyst has more adsorbed oxygen species with high mobility than the Mn/Al2O3 catalyst. The high simultaneous oxidation activity of the Mn-Cu/Al2O3 catalyst is attributed to these results. Gas-phase NO promotes the oxidation reactions of CO and CH4 in the Mn-Cu/Al2O3 catalyst while suppressing the NO oxidation reaction. These results were presumed to be because the oxidized NO was used as an oxidizing agent for CO and CH4. On the other hand, the oxidation reactions of CO and CH4 competed on the Mn-Cu/Al2O3 catalyst, but the effect was not noticeable because the catalyst activation temperature was different.