• Title/Summary/Keyword: Phase transfer

Search Result 2,010, Processing Time 0.033 seconds

Design of Fixed Phase Control Circuit of Group Delay Line using Adaptive Vector Control (자동적응 벡터 제어를 이용한 군속도 지연선로의 고정 위상 제어기 설계)

  • 정용채
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.8
    • /
    • pp.1376-1385
    • /
    • 2000
  • The phase characteristic of delay line in feedfarward linearizer has been changed due to variation of operating temperature. In this paper, design method of fixed phase control circuit of group delay line using adaptive vector control is derived. To maintain transfer characteristics of nominal operating temperature, the error correlated signals, which are changed adaptively due to changing of temperature, are added to main signals. The proposed method maintains transfer characteristics under 0.06dB of insertion loss and 0.36$^{\circ}$ of phase variation in case of 1-tone(880 MHz) and under 0.07 dB of insertion loss and 0.35$^{\circ}$ of phase variation in case of 2-tones(877 MHz, 882 MHz) for 10dB input power dynamic range and +/-10$^{\circ}$ phase variation respectively.

  • PDF

A Study on the Optimum Composition of Rose Bengal Reagent using Phase Transfer Catalyst (상이동 촉매 기법(phase transfer catalyst)을 이용한 rose bengal 시약의 최적 조성에 관한 연구)

  • Oh, Soo-Jin;Cha, Won-Jin;Choi, Da-Woon;Hong, Sung-Wook
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.7
    • /
    • pp.245-252
    • /
    • 2018
  • The rose bengal reagent, based on the phase transfer catalysis technique, is a calcium-targeting reagent that forms an insoluble salt that does not dissolve in a neutral or basic solution. It is expected to be effective in developing a latent fingerprint in a wet sample. However, many previous studies did not observe the fluorescence of the developed fingerprints, nor were the proposed methods of producing the reagents the optimal develop conditions. The aim of this study was to investigate the optimum reagent composition of rose bengal by varying the concentration of rose bengal dye and phase transfer catalyst based on maximum emission fluorescence of rose bengal. As a result, it was confirmed that rose bengal and surfactant concentration were the most effective when 0.01M: 0.008M, respectively.

Devulcanization of Vulcanized EPDM Rubber by a Chemical Method (화학적 방법에 의한 가황 EPDM 고무의 탈황처리)

  • Moon, Jae-Ho;Kim, Yang-Soo
    • Elastomers and Composites
    • /
    • v.35 no.4
    • /
    • pp.288-295
    • /
    • 2000
  • It has been tried to decrease the crosslink density of vulcanized EPDM (ethylone-propylene-diene terpolymer) rubber through a chemical devulcanization treatment. Phase transfer catalyst, alkali metal (i.e., sodium), and triphenylphosphine have been used as a chemical agent ul the devulcanization treatment. Also it has been estimated the effect of the devulcanization treatment in the case of utilization of 2-butanol as a devulcanization reaction solvent. In the devulcanization treatment using quaternary ammonium salt as a phase transfer catalyst. the devulcanization effect has been studied with the variation of catalyst molecular weight and the choice of bromide or chloride cation. In the devulcanization treatment using sodium, it has been estimated the devulcanization treatment effect depending upon the variation of reaction variables such as amount of sodium used, reaction temperature, pressure of hydrogen gas, which is used as a reaction environment. The $M_c$ value (number average molecular weight between two crosslink points) has been experimentally estimated by the equilibrium swelling method and it is quantitatively related to the crosslink density. The estimation of devulcanization effect for vulcanized EPDM rubber has been carried out by the comparison of the $M_c$ values between the untreated and the treated specimens.

  • PDF

The Effect of the Fill Charge Ratio on the Heat Transfer Characteristics of a Two-Phase Closed Thermosyphon (충전율의 변화가 밀폐형 2-상 열사이폰의 열전달 특성에 미치는 영향에 관한 연구)

  • Park, Yong-Joo;Hong, Sung-Eun;Kim, Chul-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1646-1654
    • /
    • 2002
  • A two-phase closed thermosyphon was one of the most effective devices in the removing heat because of its simple structure, thermal diode characteristics, wide operating temperature range and so on. In this study, a two-phase closed thermosyphon(working fluid PFC(C6F14), container copper(inner grooved surface)) was fabricated with a reservoir which can change the fill charge ratio. The experiments were performed in the range of 50~600W heat flow rate and 10~70% fill charge ratio. The results were compared with some correlations that were presented by Rohsenow and Immura et al. in the evaporator, by Nusselt, Gross and Uehara et al. in the condenser and by Cohen and Bayley, Wallis, Kutateladze and Faghri et al. in heat transfer limitation etc.. The heat transfer coefficient at the evaporator increased with the input power. However the effect of the fill charge ratio was nearly negligible. At the condenser, it showed an opposite trend to the evaporator and with increase of the fill charge ratio, showed some enhancement of heat transfer. The heat transport limitation was occurred by the dry-out limitation for small fill charge ratio(10%) and presented about 100W. For the case of large fill charge ratio(Ψ$\geq$40%), it was occurred by the flooding limitation at about 500W.

Highly Stable RF Transfer over a Fiber Network by Fiber-induced Phase Noise Cancellation (위상잡음 제거에 의한 광섬유망에서의 높은 안정도의 RF 전송)

  • Lee, Won-Kyu;Yee, Dae-Su;Kim, Young-Beom;Kwon, Taeg-Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.514-518
    • /
    • 2006
  • We have transferred highly stable 100 MHz RF through a 23 km fiber network. The fiber-induced phase noise due to the vibration and the temperature fluctuation in the optical path is detected and is compensated by configuring a noise-canceling servo. The transfer instability was $6{\times}10^{14}$ at 1 s of averaging time and $2{\times}10^{-17}$ at 10000 s of averaging time. The single sideband phase noise was greatly reduced by more than 20 dB below the Fourier frequency of 1 kHz. The transferred RF has nearly the same stability as the original reference frequency.

Experimental Study on Heat Transfer Characteristics of Binary Working Fluid for Clean Large Cauldron Using Liquid-Vapor Phase Change Heat (기-액 상변화 열전달을 이용한 대형 조리용기 개발을 위한 2 성분 작동유체의 열전달 특성실험)

  • Jung, Tae Sung;Kang, Hwan Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.899-905
    • /
    • 2014
  • This paper describes preliminary research conducted for developing a high-efficiency clean large cauldron using the liquid-vapor phase change heat transfer. To improve the isothermal environment of the cauldron, naphthalene and FC-40 were selected as the working fluids to operate well in the temperature range of $100-200^{\circ}C$ and used in experimental investigations of the heat transfer characteristics. A two-phase closed thermosyphon was designed and built to demonstrate the functionality of the working fluids. Startup, boiling, and condensation tests were performed, and the test results were used to examine the possibility of complementary effects of the startup and heat transfer characteristics of the two-phase closed thermosyphon using a mixture of naphthalene and FC-40.

Heat Transfer Characteristics on Toroidal Convection Loop with Nanofluids (나노유체 토로이달 자연대류 루프에서의 열전달 특성)

  • Jang, Ju-Chan;Rhi, Seok-Ho;Lee, Chung-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.235-241
    • /
    • 2009
  • Experimental studies on single-phase toroidal circulation loop(thermosyphon) have been performed in the present study with Ag-nanofluids as a working fluids. The present paper deals with an experimental study on the heat transfer behavior of single-phase toroidal loop. Toroidal loop charged with nanofluid has been constructed and a number of tests have been carried out. Different geometric parameter, e.g., orientation has been investigated. The tests were conducted employing two fluids: distilled water and Ag-nanofluid of various volume concentrations. The experiments at Rayleigh number from $10^5$ to $10^6$ showed a systematic and slight deterioration in natural convective heat transfer. It was observed that the deterioration due to the particle concentration was in the range of 5-10%. At a given particle concentration of 0.05%, abrupt decrease in the Nusselt number and the Raleigh number was observed. The present study with toroidal loop shows that the application of nanofluids for heat transfer intensification should not be decided only by the effective thermal conductivity with increasing particle concentration.

A study of single-phase liquid cooling by multiple nozzle impingement on the smooth and extended surfaces (다중노즐에 의해 분사된 평면 및 확장면의 단상액체냉각에 관한 연구)

  • 소영국;박복춘;백병준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.743-752
    • /
    • 1998
  • Experiments were performed to characterize single-phase heat transfer behavior of submerged liquid jet with multiple nozzle normally impinging on the smooth and extended surfaces. Arrays of 9 and 36 nozzles were used, with diameters of 0.5 to 2.0mm providing nozzle area ratio (AR) from 0.05 to 0.2. The square pin fin arrays were chosen as extended surfaces and the effects of geometrical parameters such as fin height, the ratio of fin width to channel width on heat transfer enhancement were examined. Single nozzle characteristics were also evaluated for comparison. The results clearly showed that heat transfer enhancement could be realized by using multiple nozzles at the constant volume flow rate. The average Nusselt number of multiple nozzle impingement on the smooth surface was correlated by the following equation : Nu/$Pr\frac{1}{3}=0.94 Re^{0.56}N^{-0.12}AR^{0.50}$The average heat transfer coefficients of multiple nozzle impingement on the extended surfaces decreased with increasing fin height and the ratio of fin width to channel width. The effectiveness of ex-tended surfaces ranged from 1.5 to 3.5 depending on the fin height, the ratio of fin width to channel width of pin fin arrays, nozzle number and nozzle area ratio.

  • PDF

Heat Transfer to a Downward Moving Solid Particle Bed Through a Circular Tube (원형튜브내에서 이동중인 고체입자층의 열전달 특성연구)

  • 이금배;박상일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1551-1558
    • /
    • 1994
  • An experiment was conducted to investigate whether an equation of heat transfer coefficient derived form energy equation of two-phase plug flow can be actually applied to the industrial field. The heat is constantly transfered to the sand beds from the wall of heat exchanger while the sand moves down through cylindrical heat exchanger by gravity from feed hooper. To increase heat transfer, turbulators such as glass ball and steel pipe packings were used. In addition, the experiment in the case of fluidizing the sand beds was also carried out. The temperatures of the sand beds and the wall were measured along the heat exchanger axis. The density and porosity of the sand beds were also measured. The deviations of the mean velocity of sands from the velocity on the wall surface because of the slip conditions on the wall were negligible (within 3%). The heat transfer coefficients when the turbulators were used and when the sand beds were fluidized were found to be much greater than those of the plain plug flow.

The Discharge Performance Optimization of a Forced Convection Type PCM Refrigeration Module Used in a Refrigeration Truck (냉동트럭용 강제대류방식 PCM 냉동모듈의 방냉성능 최적화에 관한 연구)

  • Lel, Xu;Kim, Wonuk;Lee, Sang-Ryoul;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.624-630
    • /
    • 2013
  • A truck refrigeration system using phase change material (PCM) is expected to have a lower noise level, reduced energy cost, and much lower local greenhouse gas emission. Recently, a forced convection type PCM refrigeration module has been developed. As the operation time increases, the PCM around the air inlet melts, because of a large temperature difference between the PCM and air. Therefore, the latent heat transfer area decreases and the heat transfer rate of the module decreases even though there is a lot of PCM which does not melt around the air outlet. A computational fluid dynamic modeling of the PCM refrigeration module was developed and validated by the experiment. Using the CFD, the design parameters, such as the mass flow rate of the air and roughness of the slab, were investigated to improve the heat transfer inhomogeneity. As a result, the adoption of partial roughness on the slabs improved the heat transfer inhomogeneity and reduced a fan power.