• Title/Summary/Keyword: Phase tracking algorithm

Search Result 131, Processing Time 0.029 seconds

A Method for Object Tracking Based on Background Stabilization (동적 비디오 기반 안정화 및 객체 추적 방법)

  • Jung, Hunjo;Lee, Dongeun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.1
    • /
    • pp.77-85
    • /
    • 2018
  • This paper proposes a robust digital video stabilization algorithm to extract and track an object, which uses a phase correlation-based motion correction. The proposed video stabilization algorithm consists of background stabilization based on motion estimation and extraction of a moving object. The motion vectors can be estimated by calculating the phase correlation of a series of frames in the eight sub-images, which are located in the corner of the video. The global motion vector can be estimated and the image can be compensated by using the multiple local motions of sub-images. Through the calculations of the phase correlation, the motion of the background can be subtracted from the former frame and the compensated frame, which share the same background. The moving objects in the video can also be extracted. In this paper, calculating the phase correlation to track the robust motion vectors results in the compensation of vibrations, such as movement, rotation, expansion and the downsize of videos from all directions of the sub-images. Experimental results show that the proposed digital image stabilization algorithm can provide continuously stabilized videos and tracking object movements.

Shape Based Framework for Recognition and Tracking of Texture-free Objects for Submerged Robots in Structured Underwater Environment (수중로봇을 위한 형태를 기반으로 하는 인공표식의 인식 및 추종 알고리즘)

  • Han, Kyung-Min;Choi, Hyun-Taek
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.91-98
    • /
    • 2011
  • This paper proposes an efficient and accurate vision based recognition and tracking framework for texture free objects. We approached this problem with a two phased algorithm: detection phase and tracking phase. In the detection phase, the algorithm extracts shape context descriptors that used for classifying objects into predetermined interesting targets. Later on, the matching result is further refined by a minimization technique. In the tracking phase, we resorted to meanshift tracking algorithm based on Bhattacharyya coefficient measurement. In summary, the contributions of our methods for the underwater robot vision are four folds: 1) Our method can deal with camera motion and scale changes of objects in underwater environment; 2) It is inexpensive vision based recognition algorithm; 3) The advantage of shape based method compared to a distinct feature point based method (SIFT) in the underwater environment with possible turbidity variation; 4) We made a quantitative comparison of our method with a few other well-known methods. The result is quite promising for the map based underwater SLAM task which is the goal of our research.

Modified RCC MPPT Method for Single-stage Single-phase Grid-connected PV Inverters

  • Boonmee, Chaiyant;Kumsuwan, Yuttana
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1338-1348
    • /
    • 2017
  • In this study, a modified ripple correlation control (RCC) maximum-power point-tracking (MPPT) algorithm is proposed for a single-stage single-phase voltage source inverter (VSI) on a grid-connected photovoltaic system (GCPVS). Unlike classic RCC methods, the proposed algorithm does not require high-pass and low-pass filters or the increment of the AC component filter function in the voltage control loop. A simple arithmetic mean function is used to calculate the average value of the photovoltaic (PV) voltage, PV power, and PV voltage ripples for the MPPT of the RCC method. Furthermore, a high-accuracy and high-precision MPPT is achieved. The performance of the proposed algorithm for the single-stage single-phase VSI GCPVS is investigated through simulation and experimental results.

Zero-Phase Angle Frequency Tracking Control of Wireless Power Transfer System for Electric Vehicles using Characteristics of LCCL-S Topology (LCCL-S 토폴로지 특성을 이용한 전기자동차용 무선충전시스템의 ZPA 주파수 추종 제어)

  • Byun, Jongeun;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.404-411
    • /
    • 2020
  • Inductive power transfer (IPT) systems for electric vehicles generally require zero phase angle (ZPA) frequency tracking control to achieve high efficiency. Current sensors are used for ZPA frequency tracking control. However, the use of current sensors causes several problems, such as switching noise, degrading control performance, and control complexity. To solve these problems, this study proposes ZPA frequency tracking control without current sensors. Such control enables ZPA frequency tracking without real-time control and achieves stable zero voltage switching operation closed to ZPA frequency within all coupling coefficient and load ranges. The validity of the proposed control algorithm is verified on LCCL-S topology with a 3.3 kW rating IPT experimental test bed. Simulation verification is also performed.

A Maximum Likelihood Estimator Based Tracking Algorithm for GNSS Signals

  • Won, Jong-Hoon;Pany, Thomas;Eissfeller, Bernd
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.15-22
    • /
    • 2006
  • This paper presents a novel signal tracking algorithm for GNSS receivers using a MLE technique. In order to perform a robust signal tracking in severe signal environments, e.g., high dynamics for navigation vehicles or weak signals for indoor positioning, the MLE based signal tracking approach is adopted in the paper. With assuming white Gaussian additive noise, the cost function of MLE is expanded to the cost function of NLSE. Efficient and practical approach for Doppler frequency tracking by the MLE is derived based on the assumption of code-free signals, i.e., the cost function of the MLE for carrier Doppler tracking is used to derive a discriminator function to create error signals from incoming and reference signals. The use of the MLE method for carrier tracking makes it possible to generalize the MLE equation for arbitrary codes and modulation schemes. This is ideally suited for various GNSS signals with same structure of tracking module. This paper proposes two different types of MLE based tracking method, i.e., an iterative batch processing method and a non-iterative feed-forward processing method. The first method is derived without any limitation on time consumption, while the second method is proposed for a time limited case by using a 1st derivative of cost function, which is proportional to error signal from discriminators of conventional tracking methods. The second method can be implemented by a block diagram approach for tracking carrier phase, Doppler frequency and code phase with assuming no correlation of signal parameters. Finally, a state space form of FLL/PLL/DLL is adopted to the designed MLE based tracking algorithm for reducing noise on the estimated signal parameters.

  • PDF

Asymptotic Output Tracking of Non-minimum Phase Nonlinear Systems through Learning Based Inversion (학습제어를 이용한 비최소 위상 비선형 시스템의 점근적 추종)

  • Kim, Nam Guk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.32-42
    • /
    • 2022
  • Asymptotic tracking of a non-minimum phase nonlinear system has been a popular topic in control theory and application. In this paper, we propose a new control scheme to achieve asymptotic output tracking in anon-minimum phase nonlinear system for periodic trajectories through an iterative learning control with the stable inversion. The proposed design method is robust to parameter uncertainties and periodic external disturbances since it is based on iterative learning. The performance of the proposed algorithm was demonstrated through the simulation results using a typical non-minimum nonlinear system of an inverted pendulum on a cart.

Moving Object Tracking using Differential Image (차영상을 이용한 이동 객체 추적)

  • 오명관;한군희;최동진;전병민
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.05a
    • /
    • pp.396-400
    • /
    • 2004
  • In this study, we have proposed the tracking system of single moving object. The tracking system was estimated motion using differential image, and than track the moving object by controlled Pan/Tilt device of camera. Proposed tracking system is devided into image acquisition and preprocessing phase, motion estimation phase and object tracking phase. To estimation the motion, differential image method was used. In the binary differential image, decision of threshold value was used adaptive method. And in grouping the object area, block_based recursive labeling algorithm was used. As a result of experiment, motion of moving object can be estimated. The result of tracking, object was not lost and object was tracked correctly.

  • PDF

Transformerless Three-Phase Line-connected Photovoltaic PCS (무변압기형 3상 계통연계 PV PCS)

  • Seo, Hyun-Woo;Kwon, Jung-Min;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.355-363
    • /
    • 2007
  • In this paper, the transformerless three-phase line-connected PV PCS (photovoltaic power conditioning system) is proposed. An improved P&O (perturb and observe) MPPT (maximum power point tracking) algorithm that prevents local maximum power point tracking is proposed. By controlling the three-phase line-connected voltage source inverter using outer DC-link voltage controller, inner current controller and microcontroller friendly simplified space vector modulation (SVM) method, a unity power factor is achieved. An algorithm is suggested to control the DC-link voltage faster and more correctly for the increase system stability and power factor. All algorithms and controllers are implemented on a single-chip microcontroller and the superiority of the proposed algorithms and controllers is proved by experiments.

Novel Peak-Power Tracking Algorithm for Photovoltaic Conversion System

  • Kim, Sil-Keun;Hong, Soon-Ill;Hong, Jeng-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.25-31
    • /
    • 2007
  • In this paper, a novel MPPT(Maximum Power Point Tracking) algorithm for power of PV(Photovoltaic) systems is presented using a boost converter for a connected single phase inverter. On the basic principle of power generation for the PV(photovoltaic) module, the model of a PV system is presented. On the basis of this model, simulation of this PV system and algorithms for maximum power point tracking are described by utilizing a boost converter to adjust the output voltage of the PV module. Based on output power of a boost converter, single phase inverter uses predicted current control to control four IGBT#s switch in full bridge. Furthermore, a low cost control system for solar energy conversion using the DSP is developed, based on the boost converter to adjust the output voltage of the PV module. The effectiveness of the proposed inverter system is confirmed experimentally and by means of simulation. Finally, experimental results confirm the superior performance of the proposed method.