• Title/Summary/Keyword: Phase shifting method

Search Result 182, Processing Time 0.051 seconds

Optical Encryption Scheme for Cipher Feedback Block Mode Using Two-step Phase-shifting Interferometry

  • Jeon, Seok Hee;Gil, Sang Keun
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.155-163
    • /
    • 2021
  • We propose a novel optical encryption scheme for cipher-feedback-block (CFB) mode, capable of encrypting two-dimensional (2D) page data with the use of two-step phase-shifting digital interferometry utilizing orthogonal polarization, in which the CFB algorithm is modified into an optical method to enhance security. The encryption is performed in the Fourier domain to record interferograms on charge-coupled devices (CCD)s with 256 quantized gray levels. A page of plaintext is encrypted into digital interferograms of ciphertexts, which are transmitted over a digital information network and then can be decrypted by digital computation according to the given CFB algorithm. The encryption key used in the decryption procedure and the plaintext are reconstructed by dual phase-shifting interferometry, providing high security in the cryptosystem. Also, each plaintext is sequentially encrypted using different encryption keys. The random-phase mask attached to the plaintext provides resistance against possible attacks. The feasibility and reliability of the proposed CFB method are verified and analyzed with numerical simulations.

Stress Measurement of a Squarely Perforated Plate by Photoelastic Phase Shifting Method (광탄성 위상이동법에 의한 사각형 구멍주위의 응력해석)

  • Lee C.T.;Park T.G.;Jung J.;Panganiban H.;Chung T.J.;Baek T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.49-50
    • /
    • 2006
  • Photoelasticity is widely and conveniently used methods for whole field stress analysis. In this paper, 8-step photoelastic phase shifting method was performed by using a multi-purpose polariscope to measure the fringe orders along a specified line on the specimen containing a square hole. The material of the specimen is made of Polycarbonate. The measurement results by 8-step phase shifting method were compared with the those calculated by ABAQUS.

  • PDF

A Novel Interleaving Control Scheme for Boost Converters Operating in Critical Conduction Mode

  • Yang, Xu;Ying, Yanping;Chen, Wenjie
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.132-137
    • /
    • 2010
  • Interleaving techniques are widely used to reduce input/output ripples and to increase the power capacity of boost converters operating in critical conduction mode. Two types of phase-shift control schemes are studied in this paper, the turn-on time shifting method and the turn-off time shifting method. It is found that although the turn-off time shifting method exhibits better performance, it suffers from sub-harmonic oscillations at high input voltages. To solve this problem, an intensive quantitative analysis of the sub-harmonic oscillation phenomenon is made in this paper. Based upon that, a novel modified turn off time shifting control scheme for interleaved boost converters operating in critical conduction mode is proposed. An important advantage of this scheme is that both the master phase and the slave phase can operate stably in critical conduction mode without any oscillations in the full input voltage range. This method is implemented with a FPGA based digital PWM control platform, and tests were carried out on a two-phase interleaved boost PFC converter prototype. Experimental results demonstrated the feasibility and performance of the proposed phase-shift control scheme.

Stress Analysis of a Curved Beam Plate by using Photoelastic Fringe Phase Shifing Technique (광탄성 프린지 위상 이동법을 이용한 곡선보평판의 응력 해석)

  • Baek, Tae-Hyeon;Kim, Myeong-Su;Kim, Su-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2313-2318
    • /
    • 2000
  • The method of photoelasticity allows one to obtain principal stress differences and principal stress directions in a photoelastic model. In the classical approach, the photoelastic parameters are measured manually point by point. This is time consuming and requires skill in the identification and measurement of photoelastic data. Fringe phase shifting method has been recently developed and widely used to measure and analyze fringe data in photo-mechanics. This paper presents the test results of photoelastic fringe phase shifting method for the stress analysis of a curved beam plate. The technique used here requires four phase stepped photoelastic images obtained from a circular polariscope by rotating the analyzer at 0˚, 45˚, 90˚ and 135˚. Experimental results are compared with those of ANSYS and calculated by the simple beam theory. Good agreement among the results can be observed.

A Study on the Determination of Displacement by Applied Laser Measurement (레이저응용계측에 의한 변위 정량화에 관한 연구)

  • 김경석;홍진후;강기수;최지은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.93-96
    • /
    • 2000
  • This study discusses a non-contact optical technique, phase shifting electronic speckle pattern interferometry, that is well suited for a deformation measurement. However, the phase shifting method has difficulties for determinating a deformation quantitatively beacuse of the characteristics of arctan function. In order to solve this problem, phase unwrapping methods has been studied during the last few years. In this study, using phase unwrapping based on line by line scanning phase shifted fringe patterns are studied to determinate a deformation quantitatively. Also least square fitting method is applied to reduce noise and improve image resolution.

  • PDF

Optical Encryption of Binary Information using 2-step Phase-shifting Digital Holography (2-단계 위상 천이 디지털 홀로그래피를 이용한 이진 정보 광 암호화 기법)

  • Byun, Hyun-Joong;Gil, Sang-Keun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.401-411
    • /
    • 2006
  • We propose an optical encryption/decryption technique for a security system based on 2-step phase-shifting digital holography. Phase-shilling digital holography is used for recording phase and amplitude information on a CCD device. 2-step phase-shifting is implemented by moving the PZT mirror with phase step of 0 or ${\pi}/2$. The binary data and the key are expressed with random code and random phase patterns. The digital hologram is a Fourier transform hologram and is recorded on CCD with 256 gray level quantization. We remove the DC term of the digital hologram fur data reconstruction, which is essential to reconstruct the original binary input data/image. The error evaluation fer the decrypted binary data is analyzed. One of errors is a quantization error in detecting the hologram intensity on CCD, and the other is generated from decrypting the data with the incorrect key. The technique using 2-step phase-shifting holography is more efficient than a 4-step method because 2-step phase-shifting holography system uses less data than the 4-step method for data storage or transmission. The simulation shows that the proposed technique gives good results fur the optical encryption of binary information.

Quantitative Interpretation of Holographic Fringe by Using Phase Shifting Method and Digital Image Processing (위상변이법과 디지탈 영상처리를 이용한 홀로그래피 간섭무늬의 정량적 해석)

  • 고영욱;권영하;강대임;박승옥
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1728-1735
    • /
    • 1992
  • Holographic interferometry technique has been used for the measurement of whole-field deformation with high sensitivity. However there are some difficulties in quantitatively analyzing the holographic fringes. Recently, quantitative and automatic fringe analysis by using phase shifting method in interferometry has been studied in many fields. In this paper, a real time holographic interferometry system and a phase shifting method combined with digital image processing technique are employed to record and quantitatively analyze holographic fringe patterns. To evaluate our system and analyze errors, comparison of measured deformation with theoretical deformation of cantilever beam was carried out. The accuracy of 4.5% in our system was verified We have tried to apply this method to quantitatively measure the deformation of turbine blade under the bending force.

Elemental Image and Sub Image Generation of Integral Imaging using 4-step Phase-shifting Digital holography of 3-dimensional Object (3차원 물체의 4단계 위상천이 디지털 홀로그래피를 이용한 접적영상의 요소영상과 부영상의 생성)

  • Jeong, Min-Ok;Kim, Nam;Park, Jae-Hyeong;Jeon, Seok-Hui
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.263-264
    • /
    • 2009
  • We propose a method synthesizing elemental images and sub-images for the integral imaging using phase-shifting digital holography. From acquired single 4-step phase-shifting digital holography, we can generate elemental images and sub-images for any lens array specifications.

  • PDF