• Title/Summary/Keyword: Phase plane analysis

Search Result 247, Processing Time 0.032 seconds

Chaotic Behavior Analysis in the Several Arnold Chaos Mobile Robot with Obstacles

  • Bae, Young-Chul;Kim, Yi-Gon;Mathis Tinduk;Koo, Young-Duk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.123-127
    • /
    • 2004
  • In this paper, we propose that the chaotic behavior analysis in the several Arnold chaos mobile robot of embedding some chaotic such as Arnold equation with obstacle. In order to analysis of chaotic behavior in the mobile robot, we apply not only qualitative analysis such as time-series, embedding phase plane, but also quantitative analysis such as Lyapunov exponent in the mobile robot with obstacle. We consider that there are two type of obstacle, one is fixed obstacle and the other is hidden obstacle which have an unstable limit cycle. In the hidden obstacles case, we only assume that all obstacles in the chaos trajectory surface in which robot workspace has an unstable limit cycle with Van der Pol equation.

  • PDF

Analysis of Kinematics and Kinetics According to Skill Level and Sex in Double-under Jump Rope Technique

  • Kim, Dae Young;Jang, Kyeong Hui;Lee, Myeoung Gon;Son, Min Ji;Kim, You Kyung;Kim, Jin Hee;Youm, Chang Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.3
    • /
    • pp.171-179
    • /
    • 2017
  • Objective: The purpose of this study was to perform a kinematic and kinetic analysis of double-under jump rope technique according to skill level and sex. Method: Participants comprised a skilled group of 16 (9 males, 7 females), and an unskilled group of 16 with 6 months or less of experience (9 males, 7 females). Five consecutive double-under successes were regarded as 1 trial, and all participants were asked to complete 3 successful trials. The data for these 3 trials were averaged and analyzed after collecting the stable third jump in each trial. The variables used in the analysis included phase duration, total duration, flight time, vertical toe height, stance width, vertical center of mass displacement, and right lower limb ankle, knee, and hip joint angles in the sagittal plane during all events. Results: The skilled group had a shorter phase and total duration and a shorter flight time than the unskilled group. The vertical center of mass displacement and ankle dorsiflexion angle were significantly smaller in the skilled group. The male group had a shorter phase duration than the female group. The vertical toe height was greater, the stance width was smaller, and the ankle and hip flexion angles were smaller in the male group. Conclusion: Variables that can be used to distinguish between skill levels are phase and total duration, flight time, vertical center of mass displacement, and ankle dorsiflexion angle. Differences between sexes in double-under jump rope technique may be related to lower limb flexion angle control.

Nonlinear dynamic analysis of SWNTs conveying fluid using nonlocal continuum theory

  • Kordkheili, Seyed Ali Hosseini;Mousavi, Taha;Bahai, Hamid
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.621-629
    • /
    • 2018
  • By employing the nonlocal continuum field theory of Eringen and Von Karman nonlinear strains, this paper presents an analytical model for linear and nonlinear dynamics analysis of single-walled carbon nanotubes (SWNTs) conveying fluid with different boundary conditions. In the linear analysis the natural frequencies and critical flow velocities of SWNTs are computed. However, in the nonlinear analysis the effect of nonlocal parameter on nonlinear dynamics of cantilevered SWNTs conveying fluid is investigated by using bifurcation diagram, phase plane and Poincare map. Numerical results confirm existence of chaos as well as a period-doubling transition to chaos.

Structural and Thermal Properties of Polysulfone Membrane Including Graphene (그래핀을 포함하는 폴리설폰 멤브레인의 구조 및 열 특성)

  • Choi, Hyunmyeong;Choi, Yong-Jin;Sung, Choonghyun;Oh, Weontae
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.37-44
    • /
    • 2018
  • Polysulfone composites including graphene were prepared, and their thermal characteristics in membrane states were analyzed by using a custome-made residual stress analyzer and a thermal diffusivity analyzer based on laser flash method. The residual stress analysis was carried out on the polysulfone composite films deposited on Si (100) substrates for 1 cycle of heating and cooling runs. The flat membrane of graphene-embedded polysulfone composites were prepared by the phase transfer method in distilled water and the thermal conductivity was separately measured in the out-of-plane and the in-plane directions. The residual stress of the graphene-embedded polysulfone film was gradually decreased with increasing graphene loading and the out-of-plane thermal conductivity was distinguished from the in-plane thermal conductivity in the flat membranes. These thermal characteristics are caused by the structural uniqueness of graphene and the micro-void structures formed during membrane fabrication.

A Visualization of the Spray from Small Liquid-rocket Engine Injector by Dual-mode Phase Doppler Anemometry (이중모드 위상도플러 속도계측기법에 의한 소형 액체로켓엔진 인젝터 분무의 가시화)

  • Jung, Hun;Kim, Jeong-Soo;Bae, Dae-Seok;Kwon, Oh-Boong
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.4
    • /
    • pp.60-65
    • /
    • 2010
  • A focus is given to the breakup behavior of spray droplets issuing from a nonimpinging-type injector. The analysis has been carried out experimentally by means of the dual-mode phase Doppler anemometry (DPDA). Spray characteristic parameters in terms of axial velocity, mean diameter, velocity fluctuation, and span (width of the size distribution) of droplets are measured down the geometric axis of a nozzle orifice and on the plane normal to the spray stream with the injection pressure variations. As the injection pressure increases, the velocity and its fluctuation become higher, whereas the droplet sizes get smaller. It is also shown that the magnitudes of those parameters are smoothed out by dispersion when the droplets move downstream as well as outwardly. The atomization process is significantly influenced by the injection pressure rather than the traveling distance in the experimental condition presented.

Crystal Structure and Quantitative Phase Analysis of Multiphase Sample using RIETAN and MEED (RIETAN 및 MEED법에 의한 다상시료의 결정구조 및 정량상 분석)

  • 김광복;천희곤;조동율;신종근;구경완
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.303-307
    • /
    • 2000
  • The crystal structure of ZnS fabricated by gas-liquid phase reaction was obtained by XRD and refined by RIETAN near R$_{wp}$ factor 10%. The increasement of HCP phase depended on extra H$_2$S gas and the lattice parameter and crystalline size changed by the relative ratio of multiphase. Using ZnS of the different multiphase ratio and crystalline size, sintered ZnS:Cu, Al green phosphor and the CL property resulted optimum luminescence in the range of 91~94% and 150~190$\AA$, respectably, FCC/HCP ratio and crystalline size. As changing of structure ratio, the reason of different luminescence property is now studying. As well as, after XRD pattern of TiO$_2$powder fitted by RIETAN and the structure factor using MEED method simulated about each atom of (002) plane. Additionally, we proposed RIETAN and MEED were the methods of the study of luminescence mechanism for many phosphor materials.s.

  • PDF

Numerical study of dynamic buckling for plate and shell structures

  • Liu, Z.S.;Lee, H.P.;Lu, C.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.241-257
    • /
    • 2005
  • A numerical approach combining the finite element method with two different stability criteria namely the Budiansky and the phase-plane buckling criteria is used to study the dynamic buckling phenomena of plate and shell structures subjected to sudden applied loading. In the finite element analysis an explicit time integration scheme is used and the two criteria are implemented in the Finite Element analysis. The dynamic responses of the plate and shell structures have been investigated for different values of the plate and shell imperfection factors. The results indicate that the dynamic buckling time, which is normally considered in predicting elasto-plastic buckling behavior, should be taken into consideration with the buckling criteria for elastic buckling analysis of plate and shell structures. By selecting proper control variables and incorporating them with two dynamic buckling criteria, the unique dynamic buckling load can be obtained and the problems of ambiguity and contradiction of dynamic buckling load of plate and shell structure can be resolved.

Large amplitude free torsional vibration analysis of size-dependent circular nanobars using elliptic functions

  • Nazemnezhad, Reza;Rabiei, Mohaddese;Shafa'at, Pouyan;Eshaghi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.535-547
    • /
    • 2021
  • This paper concerns with free torsional vibration analysis of size dependent circular nanobars with von kármán type nonlinearity. Although review of the literature suggests several studies employing nonlocal elasticity theory to investigate linear torsional behavior, linear/nonlinear transverse vibration and buckling of the nanoscale structures, so far, no study on the nonlinear torsional behavior of the nanobars, considering the size effect, has been reported. This study employs nonlocal elasticity theory along with a variational approach to derive nonlinear equation of motion of the nanobar. Then, the nonlinear equation is solved using the elliptic functions to extract the natural frequencies of the structure under fixed-fixed and fixed-free end conditions. Finally, the natural frequencies of the nanobar under different nanobar lengths, diameters, nonlocal parameters, and amplitudes of vibration are reported to illustrate the effect of these parameters on the vibration characteristics of the nanobars. In addition, the phase plane diagrams of the nanobar for various cases are reported.

Signal Pattern Analysis of Ground Penetrating Radar for Detecting Road Cavities (도로동공 탐지를 위한 지표투과레이더의 신호패턴에 관한 연구)

  • Yoon, Jin-Sung;Baek, Jongeun;Choi, Yeon Woo;Choi, Hyeon;Lee, Chang Min
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.61-67
    • /
    • 2016
  • OBJECTIVES : The objective of this study is to detect road cavities using multi-channel 3D ground penetrating radar (GPR) tests owned by the Seoul Metropolitan Government. METHODS : Ground-penetrating radar tests were conducted on 204 road-cavity test sections, and the GPR signal patterns were analyzed to classify signal shape, amplitude, and phase change. RESULTS : The shapes of the GPR signals of road-cavity sections were circular or ellipsoidal in the plane image of the 3D GPR results. However, in the longitudinal or transverse direction, the signals showed mostly unsymmetrical (or symmetrical in some cases) parabolic shapes. The amplitude of the GPR signals reflected from road cavities was stronger than that from other media. No particular pattern of the amplitude was found because of nonuniform medium and utilities nearby. In many cases where road cavities extended to the bottom of the asphalt concrete layer, the signal phase was reversed. However, no reversed signal was found in subbase, subgrade, or deeper locations. CONCLUSIONS : For detecting road cavities, the results of the GPR signal-pattern analysis can be applied. In general, GPR signals on road cavity-sections had unsymmetrical hyperbolic shape, relatively stronger amplitude, and reversed phase. Owing to the uncertainties of underground materials, utilities, and road cavities, GPR signal interpretation was difficult. To perform quantitative analysis for road cavity detection, additional GPR tests and signal pattern analysis need to be conducted.

Thermal Behavior and Crystallographic Characteristics of an Epitaxial C49-$TiSi_2$ Phase Formed in the Si (001) Substrate by $N_2$Treatment (Si (001) 기판에서 $N_2$처리에 의해 형성된 에피택셜 C49-$TiSi_2$상의 열적 거동과 결정학적 특성에 관한 연구)

  • Yang, Jun-Mo;Lee, Wan-Gyu;Park, Tae-Soo;Lee, Tae-Kwon;Kim, Joong-Jung;Kim, Weon;Kim, Ho-Joung;Park, Ju-Chul;Lee, Soun-Young
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.88-93
    • /
    • 2001
  • The thermal behavior and the crystallographic characteristics of an epitaxial $C49-TiSi_2$ island formed in a Si (001) substrate by $N_2$, treatment were investigated by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). It was found from the analyzed results that the epitaxial $C49-TiSi_2$ was thermally stable even at high temperature of $1000^{\circ}C$ therefore did not transform into the C54-stable phase and did not deform morphologically. HRTEM results clearly showed that the epitaxial $TiSi_2$ phase and Si have the orientation relationship of (060)[001]$TiSi_2$//(002)[110]Si, and the lattice strain energy at the interface was mostly relaxed by the formation of misfit dislocations. Furthermore, the mechanism on the formation of the epitaxial $_C49-TiSi2$ in Si and stacking faults lying on the (020) plane of the C49 Phase were discussed through the analysis of the HRTEM image and the atomic modeling.

  • PDF