• Title/Summary/Keyword: Phase fluctuation

Search Result 322, Processing Time 0.029 seconds

Tide And Tidal Current In The Estuary Of The Nakdong River (낙동강 하구의 조석과 유동)

  • Ryu, Cheong-ro;Chang, Sun-duck
    • 한국해양학회지
    • /
    • v.14 no.2
    • /
    • pp.71-77
    • /
    • 1979
  • Tidal waves and the fluctuation of current are studied by use of observed data on tidal level, flow velocity and river discharge in the estuarine region of the Nakdong River. Observed data on the tidal level at five stations are used to obtain the fluctuation of amplitude and phase of tides, and the change of the wave speed versus distance from the river mouth. Comnining these tidal data with the vertical distribution of horizontal velocity data, some characteristics of the periodic tidal flow are deduced: (1)Diminishing rates of the tidal amplitude ratio η / η$\_$0/ at high tide were 0.058η$\_$0H/ /Km at neap tides. The constant of phase change, K, was 0.035rad/km. (2)While proceeding landward, the shape of the tidal wave changes from symmetrical to asymmetrical. The traveling speed of the tidal wave crest was estimated to be 3.6∼5.2m/sec, while that of the tidal wave trough was 2.4∼ 3.5m/sec. (3)The flowing speed of the water varies periodically in accordance with the tidal period. The maximum speed of landward flow appeared approximately at two hours before the high tide, while that of seaward flow at two hours before the low tide. (4)The upstream boundary is deduced approximately to be 50km at spring tide and 44km at neap tide from the tidal velocity decreasing. the tidal influence area is estimated approximately to be 65km from the tidal amplitude damping.

  • PDF

Minimum Entropy Deconvolution을 이용한 지하수 상대 재충진양의 시계열 추정법

  • 김태희;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.574-578
    • /
    • 2003
  • There are so many methods to estimate the groundwater recharge. These methods can be categorized into four groups. First groupis related to the water balance analysis, second group is concerned with baseflow/springflow recession, and third group is interested in some types of tracers; environmental tracers and/or temperature profile. The limitation of these types of methods is that the estimated results of recharge are presented in the form of an average over some time period. Forth group has a little different approach. They use the time series data of hydraulic head and specific yield evaluated from field test, and the results of estimation are described in the sequential form. But their approach has a serious problem. The estimated results in forth typeof methods are generally underestimated because they cannot consider the discharge phase of water table fluctuation coupled with the recharge phase. Ketchum el. at. (2000) proposed calibrated method, considering recharge- and discharge-coupled water table fluctuation. But the dischargeis considered just as the areal average with discharge rate. On the other hand, there are many methods to estimate the source wavelet with observed data set in geophysics/signal processing and geophysical methods are rarely applied to the estimation of groundwater recharge. The purpose this study is the evaluation of the applicability of one of the geophysical method in the estimation of sequential recharge rate. The applied geophysical method is called minimum entropy deconvolution (MED). For this purpose, numerical modeling with linearized Boussinesq equation was applied. Using the synthesized hydraulic head through the numerical modeling, the relative sequenceof recharge is calculated inversely. Estimated results are very concordant with the applied recharge sequence. Cross-correlations between applied recharge sequence and the estimated results are above 0.985 in all study cases. Through the numerical test, the availability of MED in the estimation of the recharge sequence to groundwater was investigated

  • PDF

Construction of a Radio map for WPS Resistant to Signal Strength Fluctuation (신호 세기 변동에 강인한 WPS용 라디오 맵 구축 기법)

  • Lee, Hyoun-Sup;Kim, Jin-Deog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2685-2690
    • /
    • 2014
  • WPS determines position via a two-step process. In the construction phase, a radio map is constituted by collecting radio information signals. Positioning procedure is a step of comparing the radio signal newly acquired with the radio map. If the signals collected and the radio map are different the accuracy decreases. Even though the rate of accuracy is different according to positioning algorithms, accuracy drop is an issue common to all WPS systems. Signal strength fluctuation is caused by the malfunction of the device that receives positioning signals, obstruction and channel interference, etc. In this paper, in order to solve the problem caused by signal strength change, we propose a new radio map construction technique. The proposed method is intended to constitute a strong radio map to changes in the signal strength and updated by collecting the signal strength changes to the radio map. The use of this method is expected to enhance the accuracy of WPS by actively counteracting signal fluctuation.

LNAPL Detection with GPR (GPR 탐사방법을 이용한 유류오염물질(LNAPL) 탐지)

  • Kim, Chang-Ryol
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2001.09a
    • /
    • pp.94-103
    • /
    • 2001
  • An experiment was conducted using a sand and gravel-filled tank model, to investigate the influence on the GPR response of vadose zone gasoline vapor phase effects and residual gasoline distributed by a fluctuating water table. After background GPR measurements were made with only water in the tank, gasoline was injected into the bottom of the model tank to simulate a subsurface discharge from a leaking pipe or tank. Results from the experiment show the sensitivity of GPR to the changes in the moisture content and its effectiveness for monitoring minor fluctuation of the water table. The results also demonstrate a potential of GPR for detecting possible vapor phase effects of volatile hydrocarbons in the vadose zone as a function of time, and for detecting the effects of residual phase of hydrocarbons in the water saturated system. In addition, the results provide the basis for a strategy that has the potential to successfully detect and delineate LNAPL contamination at field sites where zones of residual LNAPL in the water saturated system are present in the subsurface.

  • PDF

Interference of Acoustic Signals Due to Internal Waves in Shallow Water

  • Na, Young-Nam;Jurng, Mun-Sub;Taebo Shim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3E
    • /
    • pp.9-20
    • /
    • 1999
  • To investigate the characteristics of internal waves (IWs) and their effects on acoustic wave propagation, a series of sea experiment were performed in the east coast of Donghae city, Korea in 1997 and 1998 where the water depth varies between 130 and 140 m. Thermistor strings were deployed to measure water temperatures simultaneously at 9 depths. CW source signals with the frequencies of 250,670 and 1000 Hz were received by an array of 15 hydrophones. Through the Wavelet transform analysis, the IWs are characterized as having typical periods of 2-17 min and duration of 1-2 hours. The IWs exist in a group of periods rather than in one period. Underwater acoustic signals also show obvious energy peaks in the periods of less than 12 min. Consistency in the periods of the two physical processes implies that acoustic waves react to the IWs through some mechanisms like mode interference and travel time fluctuation. Based on the thermistor string data, mode arriving structures are analyzed. As thermocline depth varies with time, it may cause travel time difference as much as 4-10 ms between mode 1 and 2 over 10 km range. This travel time difference causes interference among modes and thus fluctuation from range-independent stratified ocean structure. In real situations, however, there exist additional spatial variation of IWs. Model simulations with all modes and simple IWs show clear responses of acoustic signals to the IWs, i.e., fluctuations of amplitude and phase.

  • PDF

Correlation of the Wall Skin-Friction and Streamwise Velocity Fluctuations in a Turbulent Boundary Layer(I) -Analysis of Long-Time Averaged Space-Time Correlation- (난류경계층에서 벽마찰력과 유동방향 속도성분과의 상관관계(I)-시간 평균된 공간-시간 상관관계의 분석-)

  • Yang, Jun-Mo;Yu, Jeong-Yeol;Choe, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.140-152
    • /
    • 1997
  • A simultaneous measurement of the wall skin friction and near-wall streamwise velocity fluctuations is performed using hot film and hot wire anemometers to investigate the relation between them. Near-wall turbulence statistics measured with a hot-wire probe are in good agreement with previous results. Turbulence properties of the wall skin friction fluctuations measured with a hot film also show fairly good agreements with those measured by others except that rms level is lower in the present study. Long-time averaged space- time correlations show that the wall skin friction is highly correlated with a turbulence structure which is tilted from the wall in the streamwise direction. Tilting angles are obtained from the phase shifts between the wall skin-friction and streamwise velocity fluctuations. The convection velocity of the near-wall streamwise velocity obtained from the space-time correlation is in good agreement with that from the direct numerical simulation database.

Location Issue of Bearing and Unbalance Mass on the Balance Shaft for a Inline 4-Cylinder Engine (직렬 4기통 엔진용 밸런스 샤프트의 베어링 및 불평형 질량 위치 결정 문제)

  • Bae, Chul-Yong;Kim, Chan-Jung;Lee, Dong-Won;Kwon, Seong-Jin;Lee, Bong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.277-283
    • /
    • 2008
  • Balance shaft module contributes to reduce the engine-born vibration by compensating it from a unbalance mass with opposite phase but practically, this device has some problems during the operation in a high speed owing to the considerable amount of unbalance mass that leads to the large quantity of bending deformation as well as torque fluctuation at the balance shaft. To tackle two main problems, the design strategy on balance shaft is suggested by addressing the optimal location of unbalance mass and supporting hearing based on the formulation of objective function that minimizes critical issues, both bending deformation as well as torque fluctuation. The boundary condition of balance shaft assumes to be free such that any external force or contact component is not taken into consideration in this study.

Numerical prediction analysis of propeller bearing force for full-scale hull-propeller-rudder system

  • Wang, Chao;Sun, Shuai;Li, Liang;Ye, Liyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.589-601
    • /
    • 2016
  • The hybrid grid was adopted and numerical prediction analysis of propeller unsteady bearing force considering free surface was performed for mode and full-scale KCS hull-propeller-rudder system by employing RANS method and VOF model. In order to obtain the propeller velocity under self-propulsion point, firstly, the numerical simulation for self-propulsion test of full-scale ship is carried out. The results show that the scale effect of velocity at self-propulsion point and wake fraction is obvious. Then, the transient two-phase flow calculations are performed for model and full-scale KCS hull-propeller-rudder systems. According to the monitoring data, it is found that the propeller unsteady bearing force is fluctuating periodically over time and full-scale propeller's time-average value is smaller than model-scale's. The frequency spectrum curves are also provided after fast Fourier transform. By analyzing the frequency spectrum data, it is easy to summarize that each component of the propeller bearing force have the same fluctuation frequency and the peak in BFP is maximum. What's more, each component of full-scale bearing force's fluctuation value is bigger than model-scale's except the bending moment coefficient about the Y-axis.

Dynamic Modeling Scheme for Control of the Ramjet Propulsion Systems(I) (램제트 추진 시스템의 동적 제어 모델링 기법(I))

  • Kim, Sun-Kyeong;Yeom, Hyo-Won;Jeon, Chang-Soo;Sung, Hong-Gye;Park, Ik-Soo;Lee, Kyu-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.295-298
    • /
    • 2008
  • In this paper, prototype dynamic modeling scheme to control ramjet propulsion systems were proposed. From the physical understandings of engine system, a typical 2nd-order system model was applied to simulate the dynamic characteristics of fuel supply system. The shock location varience in diffuser to chamber pressure fluctuation is calculated so that the out of phase between two signals was observed.

  • PDF

Flame-Vortex Interaction and Mixing in Turbulent Hydrogen Diffusion Flames with Coaxial Air (동축공기 수소확산화염에서 화염-와류 상호작용 및 혼합)

  • Kim, Mun-Ki;Oh, Jeong-Seog;Choi, Young-Il;Yoon, Young-Bin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.149-154
    • /
    • 2007
  • This study examines the effect of acoustic excitation using forced coaxial air on the flame characteristics of turbulent hydrogen nonpremixed flames. A resonance frequency was selected to acoustically excite the coaxial air jet due to its ability to effectively amplify the acoustic amplitude and reduce flame length and NOx emissions. Acoustic excitation causes the flame length to decrease by 15 % and consequently, a 25 % reduction in EINOx is achieved, compared to a flame without acoustic excitation. Moreover, acoustic excitation induces periodical fluctuation of the coaxial air velocity, thus resulting in slight fluctuation of the fuel velocity. From phase-lock PIV and OH PLIF measurement, the local flow properties at the flame surface were investigated under acoustic forcing. During flame-vortex interaction in the near field region, the entrainment velocity and the flame surface area increased locally near the vortex. This increase in flame surface area and entrainment velocity is believed to be a crucial factor in reducing flame length and NOx emission in coaxial jet flames with acoustic excitation. Local flame extinction occurred frequently when subjected to an excessive strain rate, indicating that intense mass transfer of fuel and air occurs radially inward at the flame surface.

  • PDF