• Title/Summary/Keyword: Phase contrast microscope

Search Result 105, Processing Time 0.028 seconds

Effective Control of Stiffness of Tungsten Probe for AFM by Electrochemical Etching (전기화학적 에칭에 의한 AFM용 텅스텐 탐침의 강성 제어)

  • Han, Guebum;Lee, Seungje;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.218-223
    • /
    • 2014
  • This paper presents a method of controlling the stiffness of a tungsten probe for an atomic force microscope (AFM) in order to provide high-quality phase contrast images in accordance with sample characteristics. While inducing sufficient deformation on sample surfaces with commercial Si or $Si_3N_4$ probes is difficult because of their low stiffness, a tungsten probe fabricated by electrochemical etching with appropriately high stiffness can generate relatively large elastic deformation without damaging sample surfaces. The fabrication of the tungsten probe involves two separate procedures. The first procedure involves immersing a tungsten wire with both ends bent parallel to the surface of an electrolyte and controlling the stiffness of the tungsten cantilever by decreasing its diameter using electrochemical etching in the direction of the central axis. The second procedure involves immersing the end of the etched tungsten cantilever in the direction perpendicular to the surface of the electrolyte and fabricating a tungsten tip with a tip radius of 20-50 nm via the necking phenomenon. The latter etching process applies pulse waves every 0.25 seconds to the manufactured tip to improve its yield. Finite element analysis (FEA) of the stiffness of the tungsten probe as a function of its diameter showed that the stiffness of the tungsten probes greatly varies from 56 N/m to 3501 N/m according to the cantilever diameters from $30{\mu}m$ to $100{\mu}m$, respectively. Thus, the proposed etching method is effective for producing a tungsten probe having specific stiffness for optimal use with an AFM and certain samples.

A COMPARATIVE STUDY ON SUBGINGIVAL MICROBIAL COMPOSITION BETWEEN NATURAL TEETH AND OSSEOINTEGRATED IMPLANTS (골유착성 임플랜트와 자연치의 치은연하 세균조성에 대한 비교연구)

  • Lim Yong-Sik;Kim Yung-Soo;Kim Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.3
    • /
    • pp.411-422
    • /
    • 1993
  • Osseointegrated dental implants are now an accepted part of the prosthetic treatment of fully and partially edentulous patients. Clinical studies have shown that osseointegrated dental implants may successfully be used as abutments for prosthetic rehabilitations, and that the supporting tissue can be kept in a stable and healthy clinical state for prolonged periods of time. The purpose of this study was to look for differences in the distribution in the bacterial morphotypes around natural teeth and osseointegrated dental implants. The subgingival plaque around natural teeth and implants was analysed by means of differential phase-contrast microscopy. In addition, clinical indices used to analyse natural teeth condition were used to compare the condition of natural teeth and implants. The results were as follows : 1. In implants of partially edentulous patients, the plaque index, sulcus bleeding index(P<0.05), pocket depth(P<0.01) were greater than natural teeth. 2. Gingival crevicular fluid volume was not significantly different between natural teeth and implants. 3. In implants of fully edentulous patients, the plaque index was greater than natural teeth(P<0.01) and implants of partially edentulous patients(P<0.05), but sulcus bleeding index was not significantly different. 4. In partially edentulous patient, coccoid cell proportion was greater in implants than natural teeth (P<0.05). 5. In implants of fully edentulous patients, coccid cell proportion was even greater than implants of partially edentulous patients(P<0.05) and natural teeth(P<0.01). 6. Among three groups, the proportions of non-motile rods, motile rods, spirochetes and others were not significantly different. 7. The proportion of motile bacteria was not significantly different among three group.

  • PDF

Effect of Coagulation Heat Capacity on the PVDF Membrane via TIPS Method (열유도상분리법을 이용한 응고조의 열용량에 따른 PVDF 분리막의 구조 분석)

  • Lee, Jeong Woo;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • In this study, we used TIPS (thermally induced phase separation) for the application of water treatment membrane, and observed the change in morphology of separation membrane due to the change of solidification temperature and heat capacity. For manufactured membrane, PVDF and silica with excellent mechanical properties and chemical resistance were used, and DOP (dioctyl phthalate), DBP (dibutyl phthalate) were used as the diluent. Using the SEM (scanning electron microscope), the morphology of each different coagulation solutions of heat capacity change was observed. As the heat capacity increased, the crystallization rate of PVDF was decreased and showed large pore. In contrast, It also confirmed that the smaller heat capacity, the faster the crystallization rate and make smaller pores.

Cleansing effect of the alkaline ionized water on microorganisms of the denture surface (알칼리 이온수의 의치 미생물에 대한 세정효과에 관한 연구)

  • Kim, Young-Mi;Choi, Yu-Sung;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.2
    • /
    • pp.138-144
    • /
    • 2011
  • Purpose: The purpose of this study was to evaluate the cleansing effect of recently developed alkaline ionized water, e-WASH, on microorganisms of the denture surface. Materials and methods: Removable partial and complete dentures were randomly assigned to the experimental group of 41 dentures, and the control group of 26. The denture was immersed in the e-WASH solution (experimental group), or tap water (control group) for 5 minutes. The plaque was collected from the denture surface before and after immersion, and smeared on the slide glass. Amount and motility of microorganisms were compared according to the morphology and strain of microorganisms, using the phase contrast microscope. Statistical analysis was accomplished with paired t-test and independent t-test at 95% confidence level (P<.05). Results: 1. The amount of cocci, bacilli, filamentous, spiral/comma, and the motility of bacilli, filamentous, and spiral/comma were decreased after denture cleansing with the alkaline ionized water, e-WASH (P<.05). But in the control group, only the amount of cocci showed a significant difference (P<.05), but no difference from the others. There were no differences in other analysis. 2. In the experimental group, the amount of cocci, bacilli, filamentous, spiral/comma, and the motility of bacilli, filamentous, and spiral/comma were smaller and more inactive compared to the control group (P<.05). Conclusion: These results indicated that the alkaline ionized water, e-WASH could effectively reduce the amount and motility of the experimented microorganisms on the denture surface, and that e-WASH could be recommended as an effective denture cleanser.

The image construction of the surface and subsurface defects using complex amplitude of the reflected ultrasonic signals from the solid (초음파 반사신호의 복소 진폭을 이용한 교체 내부 결함의 영상 구조)

  • Kim, Hyun;Lim, Ho;Kim, Ki-Yeoul;Koo, Kil-Mo
    • The Journal of Information Technology
    • /
    • v.4 no.2
    • /
    • pp.129-136
    • /
    • 2001
  • Most of the acoustic microscopes have been constructed acoustic image by simply measuring the amplitude of the reflected signal from the specimen. This method fails to produce images of good quality because the change in amplitude is not sensitive enough to specimen with fine variation. In this paper, we have been constructed the acoustic microscope system which has been able to measure simultaneously the amplitude and phase of the reflected ultrasonic signal. And also we have been constructed the amplitude and phase images for the 500 won coin as a sample and the alumium spacimen with internal round defect, and compared and analyzed these images. In expermental result, the phase image have shown better sensitive than the amplitude image and given better contrast for the micro height variation of specimen. It will be expected that the phase image can be used as an additional bit of information to improve ambiguituities in amplitude image on nondestructive testing for specimen with fine variation.

  • PDF

Review on asbestos analysis (석면 분석방법에 대한 고찰)

  • Ham, Seung hon;Hwang, Sung Ho;Yoon, Chungsik;Park, Donguk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.3
    • /
    • pp.213-232
    • /
    • 2009
  • This document was prepared to review and summarize the analytical methods for airborne and bulk asbestos. Basic principles, shortcomings and advantages for asbestos analytical instruments using phase contrast microscopy(PCM), polarized light microscopy(PLM), X-ray diffractometer (XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM) were reviewed. Both PCM and PLM are principal instrument for airborne and bulk asbestos analysis, respectively. If needed, analytical electron microscopy is employed to confirm asbestos identification. PCM is used originally for workplace airborne asbestos fiber and its application has been expanded to measure airborne fiber. Shortcoming of PCM is that it cannot differentiate true asbestos from non asbestos fiber form and its low resolution limit ($0.2{\sim}0.25{\mu}m$). The measurement of airborne asbestos fiber can be performed by EPA's Asbestos Hazard Emergency Response Act (AHERA) method, World Health Organization (WHO) method, International Standard Organization (ISO) 10312 method, Japan's Environmental Asbestos Monitoring method, and Standard method of Indoor Air Quality of Korea. The measurement of airborne asbestos fiber in workplace can be performed by National Institute for Occupational Safety and Health (NIOSH) 7400 method, NIOSH 7402 method, Occupational Safety and Health Administration (OSHA) ID-160 method, UK's Health and Safety Executive(HSE) Methods for the determination of hazardous substances (MDHS) 39/4 method and Korea Occupational Safety and Health Agency (KOSHA) CODE-A-1-2004 method of Korea. To analyze the bulk asbestos, stereo microscope (SM) and PLM is required by EPA -600/R-93/116 method. Most bulk asbestos can be identified by SM and PLM but one limitation of PLM is that it can not see very thin fiber (i.e., < $0.25{\mu}m$). Bulk asbestos analytical methods, including EPA-600/M4-82-020, EPA-600/R-93/116, OSHA ID-191, Laboratory approval program of New York were reviewed. Also, analytical methods for asbestos in soil, dust, water were briefly discussed. Analytical electron microscope, a transmission electron microscope equipped with selected area electron diffraction (SAED) and energy dispersive X-ray analyser(EDXA), has been known to be better to identify asbestiform than scanning electron microscope(SEM). Though there is no standard SEM procedures, SEM is known to be more suitable to analyze long, thin fiber and more cost-effective. Field emission scanning electron microscope (FE-SEM) imaging protocol was developed to identify asbestos fiber. Although many asbestos analytical methods are available, there is no method that can be applied to all type of samples. In order to detect asbestos with confidence, all advantages and disadvantages of each instrument and method for given sample should be considered.

Grain size, crystalline phase and fracture toughness of the monolithic zirconia

  • Bocam, Kodchakorn;Anunmana, Chuchai;Eiampongpaiboon, Trinuch
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.5
    • /
    • pp.285-293
    • /
    • 2022
  • PURPOSE. This study evaluated the relationship among translucency, crystalline phase, grain size, and fracture toughness of zirconia. MATERIALS AND METHODS. Four commercial zirconia - Prettau®Anterior® (PA), Prettau® (P), InCorisZI (ZI), and InCorisTZI (TZI)- were selected for this study. The bar specimens were prepared to determine fracture toughness by using chevron notched beam method with four-point bending test. The grain size was evaluated by a mean linear intercept method using a scanning electron microscope. X-ray diffraction and Rietveld refinement were performed to evaluate the amount of tetragonal and cubic phases of zirconia. Contrast ratio (CR) was measured to investigate the level of translucency. RESULTS. PA had the lowest fracture toughness among other groups (P < .05). In addition, the mean fracture toughness of P was significantly less than that of ZI, but there was no difference compared with TZI. Regarding grain size measurement, PA had the largest average grain size among the groups. P obtained larger grain size than ZI and TZI (P < .05). However, there was no significant difference between ZI and TZI. Moreover, PA had the lowest CR value compared with the other groups (P < .05). This means PA was the most translucent material in this study. Rietveld refinement found that PA presented the greatest percentage of cubic phase, followed by TZI, ZI, and P, respectively. CONCLUSION. The different approaches are used by manufacturers to fabricate various types of translucent zirconia with different levels of translucency and mechanical properties, which should be concerned for material selection for successful clinical outcome.

The Characteristics of Dispersed Asbestos Fibers Produced From Building Materials (건축재료에서 발생되는 석면입자의 특성 연구)

  • 유성환
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.191-199
    • /
    • 1993
  • This paper describes the results of a systematic study to determine the characteristics of particle generated from various types of asbestos containing material(ACM) and manmade fiber material(MMFM) during operations of cutting and grinding in laboratory and workplace. Tests were conducted with a specially designed glove box which allowed complete sampling of the generated asbestos fibers. Specificially, air measurements were made during ACM and MMFM installation in building. All personal air samples collected were identified by polarized light microscopy(PLM), X-ray diffraction(XRD) and scanning electron microscope with energy dispersive X-ray analysis(SEM/EDXA). Also, the samples were counted by phase contrast microscope(PCM) in order to compare the results with the permissible exposure standard for workplace. Results indicate that the characterisitcs of fibers found in the roofing sheet, the ceiling and the wall insulation boards were identical to those of asbestos, while the characteristics of fibers found in the ceiling insulation board, the floor tile and the sprayed on insulation products in parking area were identical to those of asbestos, while the characteristics of fibers found in the ceiling insulation board, the floor tile and the sprayed on insulation products in parking area were identical to those of rock wool. The concentrations of airborne fibers from various building materials cut by a grinder for 5 minutes were in the ranges of 0.09 $\sim$ 1.71 fibers/cc(f/cc). The highest concentration(1.71f/cc) was found during grinding the wall insulation board which also contains rock wool. The airborne fiber concentrations generated by installing at workplace were ranged from 0.0009 to 0.029 f/cc. All asbestos fibers from the ceiling insulation board at workplace were less than 20$\mu$m in length and more than 20% of them had the average aspect ratio greater than 20. Therefore, for the purpose of decreasing asbestos and man-made fiber concentrations at the workplace, the ceiling and wall board should use strong binding material to increase the binding force with fiber. Also, the permissible exposure standard for workplace(2.0f/cc) in Korea should be constituted below the maximum avaiable concentration measured at glove box.

  • PDF

Characterization of Recombinant Baculovirus Ewpressing Polyhedrin Gene of Bombyx mori and Autographa californica Nuclear Polyhedrois Virus (두 종류의 다각체 단백질 유전자를 발현하는 유전자 재조합 핵다각체병 바이러스의 특성)

  • 김우진;우수동
    • Journal of Sericultural and Entomological Science
    • /
    • v.38 no.1
    • /
    • pp.36-41
    • /
    • 1996
  • Recombinant baculoviruses having expanded host range were selected by coinfection of Autographa california NPV and Bombyx mori NPV into Sf-9 and BmN-4 insect cell lines. In order to determine the polyhedra morhplogy of RecS-A6, one of a recombinant baculovirus, polyhedra of RecS-A6 produced in insect cells were observed by phase contrast microscope and scanning electron microscope. The results revealed that the recombinant baculovirus had a various polyhedra morphology which was different from its parental viruses, suggesting that the various morhpology of recombinant baculovirus with an expanded host range was due to the genetic recombination of viral genome. To analyze the genomic recombinantion of the recombinant baculoviruses, genomic DNAs of two parent viruses and RecS-A6 were digested with restriction endonuclease and subjected to agarose gel electrophoresis. Southern blot analysis revealed that RecS-A6 has two polyhedrin gene of AcNPV and BmNPV in a viral genome. Polyhedral protein of recombinant baculovirus was analysed by SDS-PAGE. The result showed that molecular weight of polyhedral protein of RecS-A6 containing two polyhedrin gene of AcNPV and BmNPV was as the 31 kDa band of AcNPV and 30 kDa band of BmNPV.

  • PDF

Physical and Chemical Effects of Extracellular Matrix on the Growth of Cardiomyocytes (HL-1) (세포외 기질 물질의 물리·화학적 영향에 따른 심근세포(HL-1)의 성장 연구)

  • Hong, Yoon-Mi;Choi, Seong-Kyun;Kim, Sun-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1229-1235
    • /
    • 2011
  • The extracellular matrix (ECM) is a key factor affecting cell growth and adhesion to the culture surface, and it is also important for maintaining the innate characteristics of cells. Here, we describe the effects of the ECM on cardiomyocyte (HL-1 cell line) growth, viability, phenotype, and contractile ability. Five different ECM materials were investigated to analyze their effects on the cell growth. The physical morphology of the ECM-coated surfaces was scanned with an atomic force microscope (AFM), and the attachment, growth, proliferation, viability, and phenotype of the cells were analyzed using fluorescence immunostaining and an inverted phase contrast microscope.