• Title/Summary/Keyword: Phase changing material

Search Result 77, Processing Time 0.027 seconds

Modification of Coal-Tar-Pitch and Carbon Fiber Properties by Polymer Additives (고분자 첨가에 의한 콜타르 핏치의 결정성 및 탄소섬유 물성 변화)

  • Kim, Jung-Dam;Yun, Jae-Min;Lim, Yun-Soo;Kim, Myung-Soo
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.173-181
    • /
    • 2016
  • In order to use coal tar pitch (CTP) as a raw material for carbon fibers, it should have suitable properties such as a narrow range of softening point, suitable viscosity and uniform optical properties. In this study, raw CTP was modified by heat treatment with three types of polymer additives (PS, PET, and PVC) to make a spinnable pitch for carbon fibers. The yield, softening point, C/H ratio, insoluble yield, and meso-phase content of various modified CTPs with polymer additives were analyzed by changing the type of polymer additive and the heat treatment temperature. The purpose of this study was to compare the properties of CTPs modified by polymer addition with those of a commercial CTP. After the pitch spinning, the obtained green fibers were stabilized and carbonized. The properties of the respective fibers were analyzed to compare their uniformity, diameter change, and mechanical properties. Among three polymer additives, PS220 and PET261 pitches were found to be spinnable, but the carbon fibers from PET261 showed mechanical properties comparable with those of a commercial CTP produced by an air-blowing method (OCI284). The CTPs modified with polymer additive had higher ${\beta}$-resin fractions than the CTP with only thermal treatment indicating a beneficial effect of carbon fiber application.

Partial Discharge Characteristics of Epoxy for Ignition Coil (점화코일용 에폭시의 부분방전 특성)

  • Shin Jong-Yeol;Hong Jin-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.141-149
    • /
    • 2004
  • The automobile equipped with a gasoline engine uses the ignition coil, namely, a high voltage generator, to make the mixed fuel ignited and burned in the combustion chamber, which results in the power to drive the engine. The ignition coil functions to convert a low voltage of the primary into a hiか voltage of the secondary by switching method, which will be transmitted to the electrode. Here, if the ignition coil has a defect even a little, it cannot function well. In this study, it was chosen epoxy molding ignition coil in recently and epoxy resin which is insulation material as specimens, and it was measured the characteristics of the partial discharge occurring to the specimens when those were applied to a voltage, and thereby, it was researched and analyzed the distribution of phase angle, amount and count of discharge due to the changing voltage, And as the result is applying to the actual automobile ignition system, it can be expected the enhancement of the performance of the ignition coil and the reliability of the electrical equipment.

Development of Porous polyurethane Arterial-Venous Shunt by Thermal Control (온도 조절을 통한 다공성 폴리우레탄 동정맥 누관의 개발)

  • Jeong, J.S.;Ryu, G.H.;Kim, J.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.478-481
    • /
    • 1997
  • A technique or the preparation of porous polyurethane vascular prostheses was investigated. Small-diameter vessels are not in general clinical use due to their limited long-term biocompatibility and low patency rates in experimental trial. These limits are mainly due to the failure of mechanical unction of the vascular grafts. This failure has been suggested to result partially from compliance mismatch. The long-term patency is considered to depend critically on the properties of the material and the fabrication process of the graft. So the control of pores is very important and main points to develop a available vascular grafts. Two-kind polymer sheets was compared. One was the porous PU-sheet made at room temperature by the solvent/non-solvent exchange. And the other was the porous PU-sheet which was fabricated by thermal phase transition and solvent-/non-solvent exchange using the thermal controller. The polymer sheets had a uniform pore size and pore occupation. According to the result of the above experiments, polyurethane solution was injected into a mold designed or U-type tube. The average pore size and pore occupation were easily changed by changing polyurethane concentration, freezing temperature, and methods. This technique can give a proper pore size ($10{\sim}45\;{\mu}m$) or tissue in growth, and suitable compliances or matching with arteries and veins. Besides, the fabrication of more complicated shaped vessels such as the U-type vascular grafts is easily controlled by using the fixed mold. this method might give a desired compliant graft or artificial implantation with the presently valid medical polymers.

  • PDF

Effect of Deposition Parameter and Mixing Process of Raw Materials on the Phase and Structure of Ytterbium Silicate Environmental Barrier Coatings by Suspension Plasma Spray Method (서스펜션 플라즈마 스프레이 코팅법으로 제조된 Ytterbium Silicate 환경차폐코팅의 상형성 및 구조에 미치는 증착인자 및 원료혼합 공정의 영향)

  • Ryu, Ho-lim;Choi, Seon-A;Lee, Sung-Min;Han, Yoon-Soo;Choi, Kyun;Nahm, Sahn;Oh, Yoon-Suk
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.437-443
    • /
    • 2017
  • SiC-based composite materials with light weight, high durability, and high-temperature stability have been actively studied for use in aerospace and defense applications. Moreover, environmental barrier coating (EBC) technologies using oxide-based ceramic materials have been studied to prevent chemical deterioration at a high temperature of $1300^{\circ}C$ or higher. In this study, an ytterbium silicate material, which has recently been actively studied as an environmental barrier coating because of its high-temperature chemical stability, is fabricated on a sintered SiC substrate. $Yb_2O_3$ and $SiO_2$ are used as the raw starting materials to form ytterbium disilicate ($Yb_2Si_2O_7$). Suspension plasma spraying is applied as the coating method. The effect of the mixing method on the particle size and distribution, which affect the coating formation behavior, is investigated using a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), and X-ray diffraction (XRD) analysis. It is found that the originally designed compounds are not effectively formed because of the refinement and vaporization of the raw material particles, i.e., $SiO_2$, and the formation of a porous coating structure. By changing the coating parameters such as the deposition distance, it is found that a denser coating structure can be formed at a closer deposition distance.

Study on the Melting Point Depression of Tin Nanoparticles Manufactured by Modified Evaporation Method (수정된 증발법을 이용하여 제작된 주석 나노입자의 녹는점 강하에 관한 연구)

  • Kim, Hyun Jin;Beak, Il Kwon;Kim, Kyu Han;Jang, Seok Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.695-700
    • /
    • 2014
  • In the present study, the melting temperature depression of Sn nanoparticles manufactured using the modified evaporation method was investigated. For this purpose, a modified evaporation method with mass productivity was developed. Using the manufacturing process, Sn nanoparticles of 10 nm size was manufactured in benzyl alcohol solution to prevent oxidation. To examine the morphology and size distribution of the nanonoparticles, a transmission electron microscope was used. The melting temperature of the Sn nanoparticles was measured using a Differential scanning calorimetry (DSC) which can calculate the endothermic energy during the phase changing process and an X-ray photoelectron spectroscopy (XPS) used for observing the manufactured Sn nanoparticle compound. The melting temperature of the Sn nanoparticles was observed to be $129^{\circ}C$, which is $44^{\circ}C$ lower than that of the bulk material. Finally, the melting temperature was compared with the Gibbs Thomson and Lai's equations, which can predict the melting temperature according to the particle size. Based on the experimental results, the melting temperature of the Sn nanoparticles was found to match well with those recommended by the Lai's equation.

In Situ Monitoring of the MBE Growth of AlSb by Spectroscopic Ellipsometry

  • Kim, Jun-Yeong;Yun, Jae-Jin;Lee, Eun-Hye;Bae, Min-Hwan;Song, Jin-Dong;Kim, Yeong-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.342-343
    • /
    • 2013
  • AlSb is a promising material for optical devices, particularly for high-frequency and nonlinear-optical applications. And AlSb offers significant potential for devices such as quantum-well lasers, laser diodes, and heterojunction bipolar transistors. In this work we study molecular beam epitaxy (MBE) growth of an unstrained AISb film on a GaAs substrate and identify the real-time monitoring capabilities of in situ spectroscopic ellipsometry (SE). The samples were fabricated on semi-insulating (0 0 1) GaAs substrates using MBE system. A rotating sample stage ensured uniform film growth. The substrate was first heated to $620^{\circ}C$ under As2 to remove surface oxides. A GaAs buffer layer approximately 200 nm- thick was then grown at $580^{\circ}C$. During the temperature changing process from $580^{\circ}C$ to $530^{\circ}C$, As2 flux is maintained with the shutter for Ga being closed and the reflection high-energy electron diffraction (RHEED) pattern remaining at ($2{\times}4$). Upon reaching the preset temperature of $530^{\circ}C$, As shutter was promptly closed with Sb shutter open, resulting in the change of RHEED pattern from ($2{\times}4$) to ($1{\times}3$). This was followed by the growth of AlSb while using a rotating-compensator SE with a charge-coupled-device (CCD) detector to obtain real-time SE spectra from 0.74 to 6.48 eV. Fig. 1 shows the real time measured SE spectra of AlSb on GaAs in growth process. In the Fig. 1 (a), a change of ellipsometric parameter ${\Delta}$ is observed. The ${\Delta}$ is the parameter which contains thickness information of the sample, and it changes in a periodic from 0 to 180o with growth. The significant change of ${\Delta}$ at~0.4 min means that the growth of AlSb on GaAs has been started. Fig. 1b shows the changes of dielectric function with time over the range 0.74~6.48 eV. These changes mean phase transition from pseudodielectric function of GaAs to AlSb at~0.44 min. Fig. 2 shows the observed RHEED patterns in the growth process. The observed RHEED pattern of GaAs is ($2{\times}4$), and the pattern changes into ($1{\times}3$) with starting the growth of AlSb. This means that the RHEED pattern is in agreement with the result of SE measurements. These data show the importance and sensitivity of SE for real-time monitoring for materials growth by MBE. We performed the real-time monitoring of AlSb growth by using SE measurements, and it is good agreement with the results of RHEED pattern. This fact proves the importance and the sensitivity of SE technique for the real-time monitoring of film growth by using ellipsometry. We believe that these results will be useful in a number of contexts including more accurate optical properties for high speed device engineering.

  • PDF

An Analysis of the Economy of Scale for Domestic On-site Hydrogen Fueling Stations (국내 분산형 수소충전소의 규모의 경제성 분석)

  • Gim, Bong-Jin;Kim, Jong-Wook
    • Journal of Energy Engineering
    • /
    • v.16 no.4
    • /
    • pp.170-180
    • /
    • 2007
  • This paper deals with the economy of scale for domestic on-site hydrogen stations fueled with natural gas and naptha. We evaluate the economic feasibility of on-site hydrogen stations with hydrogen production capacities of $30Nm^3/hr,\;100Nm^3/hr\;and\;300Nm^3/hr$. We build a classical economic feasibility model and we make some sensitivity analyses by changing the values of input factors such as the hydrogen sale price and the discount rate. The estimated hydrogen prices of steam methane reforming stations with production capacities of $30\;Nm^3/hr,\;100\;Nm^3/hr\;and\;300\;Nm^3/hr$ are 18,472 won/kg, 10,689 won/kg and 7,758 won/kg, respectively. Also, the hydrogen prices are about the same if we use naptha as a raw material for hydrogen energy instead of natural gas. It turns out that small and medium size domestic on-site hydrogen stations will not be economical in the near future. This indicates that we need to construct large scale on-site hydrogen fueling stations even for the initial phase of the hydrogen economy.