• Title/Summary/Keyword: Phase boundary

Search Result 1,106, Processing Time 0.027 seconds

Dielectric and Piezoelectric Properties of PNN-PZN-PZT Ceramics for Microdisplacement Element Application (미소 변위 소자용 PNN-PZN-PZT 세라믹스와 유전 및 압전특성)

  • 이수호;조현철;박정학;최헌일;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.142-145
    • /
    • 1996
  • In this study, dielectric and piezoelectric properties of 0.5PNN-(0.5-x)PZN-xPZT system ceramics with PZT mole ratio were investigated. As the amount of PZT increases, curie temperature was increased. The maximum of dielectric and piezoelectric constant was shoun at 0.3 mole of PZT amount. As a results, we have found that the structure of ceramics with PZT 0.3 mole was morphotropic phase boundary.

  • PDF

The Safety Study on High Tension Bolted Splice by Sliding and Plastic Analysis (고장력볼트 연결부의 미끄럼 및 소성해석에 의한 안전도 연구)

  • Bang, Myung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.110-114
    • /
    • 2003
  • In this study is proposed the advanced elasto-plastic analytical method which can identify complex structural behaviors on the splice part of steel structures such as sliding and plastic contact problem between splice plates and blots. Compliated boundary conditions and various manufacturing defects are considered in various analytical cases. In the design or repair phase the plastic behavior and ultimate strength of splice parts should be very carefully verified to extend the service life of steel structures.

Analysis of Turbulent Heat Transfer of Gas-Solid Suspension Flow In Pipes (固體分末 이 浮上된 二相亂流 管流動 의 熱傳達 解析)

  • 김재웅;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.4
    • /
    • pp.331-340
    • /
    • 1982
  • Numerical analysis is made on the turbulent heat transfer with suspension of solid particles in circular tube with constant heat flux. The mean motion of suspending particles in mixture is treated as the secondary gas flow with virtual density and viscosity. Our modeling of turbulent transport phenomena of suspension flow is based on this assumption and conventional mixing length theory. This paper gives the evidence that the mixing length models can be extended to close the governing equations for two phase turbulent flow with solid boundary at a first order level. Results on Nusselt numbers obtained by analytical treatments are compared with available experimental data and discussed. They suggest that the most important parameters of two phase turbulent heat transfer phenomena are relative particle diameter to pipe diameter, gas-solid loading ratio, and specific heat of suspending material.

Reflection of a gaussian beam from a planar dielectric interface

  • Lee, Yeon H.
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.200-206
    • /
    • 1996
  • When a Gaussian beam is incident to a planar dielectric interface at an angle other than Brewster angle or the critical angle of total reflection, we derive the six nonspecular effects of rotation, lateral shift, focal shift, Rayleigh length change, magnitude and phase changes in the complex amplitude of the reflected beam simultaneously by taking account of the boundary condition. In the derivation we assume a Gaussian beam of fundamental mode to emerge from the interface and then match at the interface the constant, linear, and quadratic variations of the amplitude and phase of the reflected beam with those of the incident beam multiplied by the reflection coefficient. Our calculation shows that the six nonspecular effects can result from a linear variation of the natural logarithm of the reflection coefficient at the interface.

  • PDF

Fatigue Frequency Effect of High Temperature Fatigue Fracture Behavior of $Al_2O_3$-33Vol.% $SiC_w$ ($Al_2O_3$-33Vol.% $SiC_w$의 고온피로에 미치는 피로하중주파수의 영향)

  • 김송희
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.10
    • /
    • pp.785-792
    • /
    • 1991
  • An investigation of the crack propagation behavior of Al2O3-33Vol.% SiCw at 140$0^{\circ}C$ was conducted with various loading frequencies. Higher crack propagation was observed in lower frequency and higher load ratios. Interface sliding fracture due to glassy phase from the oxidation of SiCw and cavitation along grain boundary of diffusional creep appeared to be the main mechanism of fatigue fracture in slower crack propagation while interface sliding and whisker pull out aided by glassy phase formation played main role of fatigue fracture for higher crack growth condition. The frequency effect on deformation behavior was discussed with a Maxwell model.

  • PDF

A Study on Dynamic Characteristics of Synchronously Controlled Hydrodynamic Journal Bearing (동기 제어되는 동압 베어링의 동특성에 관한 연구)

  • Rho, Byoung-Hoo;Kim, Kyung-Woong
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.311-315
    • /
    • 2001
  • In this paper synchronous whirl of bearing is employed as control algorithm of actively controlled hydrodynamic journal bearing to suppress the whirl instability and unbalance response of a rotor-bearing system. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than conventional analysis which uses the Reynolds condition. The stability and unbalance responses of a rotor-bearing system are investigated for various control gain and phase difference between the bearing and journal motion. It is shown that the unbalance response of a rotor-bearing system can be greatly improved by synchronous whirl of the bearing, and there is an optimum phase difference, which gives the minimum unbalance response of the system, at given operating condition. It is also found that the speed at onset of instability can be greatly increased by synchronous whirl of the bearing.

  • PDF

Acoustic Enhancement of Solid-Liquid Phase Change Heat Transfer (음향 흐름에 의한 고-액 상변화 열 전달의 촉진)

  • 박설현;오율권
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.262-268
    • /
    • 2002
  • The present paper investigated the effect of ultrasonic vibrations on the melting process of phase-change materials (PCM). Furthermore, the present study considered constant heat-flux boundary condition, whereas many of the previous researches had adopted constant wall-temperature condition. The results of the present study revealed that ultrasonic vibrations accompanied the effects like acoustic streaming, cavitation, and thermally-oscillating flow. Such effects are a prime mechanism in the overall melting process when ultrasonic vibrations are applied. They speed up the melting process as much as 2.5 times, compared with the result of natural melting. Also, energy can be saved by applying ultrasonic vibrations to the natural melting. In addition, temperature and Nusselt numbers over time provided a conclusive evidence of the important role of ultrasonic vibrations on the melting phenomena.

A Study on Effect of PWHT on Mechanical Properties of Overlaid Weld Metal in Duplex Stainless Clad Vessel (이상 스테인리스 Clad강 육성 용접부의 기계적 성질에 미치는 후열처리의 영향에 관한 연구)

  • Seo Chang Gyo;Kim Yeong Il;Seong Hui Jun;Kim Dae Sun
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.174-176
    • /
    • 2004
  • The duplex stainless clad vessel with 38m & over thickness shall be performed to PWHT based on the ASME code. In this case, it is well-known that precipitators such as carbides and sigma($\sigma$) phase are formed at gram boundary between ferrite and austenite phase. Therefore, a weld test for simulating this situation has been planned and performed by 3309LMo71-1 for barrier layer and E2209Tl-1 for 2nd & over layer and then carried out to investigate the overlaid weld metal. Based on the test results, it could be concluded that PWHT should be carried out after the completion of 1st(barrier) layer and then 2 & over layer should be applied.

  • PDF

Fixed-Grid Simulation of Convection-Dominated Melting in a Rectangular Cavity

  • Wongee Chun;Kim, Sin;Kim, Min-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.796-803
    • /
    • 2001
  • Numerical solutions for the convection-dominated melting in a rectangular cavity are presented. The enthalpy-porosity model is employed as the mathematical model. This model is applied in conjunction with the EIT method to detect boundary movement in a phase changing environment. The absorption and evolution of latent heat during the phase change is dealt with by the enthalpy-based energy equation. This seems to be more efficient than resolving the temperature-based energy equation. The velocity switch-off, which is required when solid changes into liquid, is modeled by the porous medium assumption. For efficiency and simplicity of the solutions procedure, this paper proposes a simple algorithm, which iterates the temperature and the liquid fraction of the cells comprising the front layer. The numerical results agree reasonably well with the experimental data and other previous works using the transformed-grid system.

  • PDF