• Title/Summary/Keyword: Phase averaged velocity

Search Result 88, Processing Time 0.019 seconds

Bulk Flow Pulsations and Film Cooling from Two Rows of Staggered Holes : Effect of Blowing Ratios (주유동의 맥동과 엇갈린 2열 분사홀로부터의 막냉각 : 분사비의 영향)

  • Sohn, Dong Kee;Lee, Joon Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1195-1207
    • /
    • 1998
  • Periodic pulsations in the static pressure near turbine surfaces as blade rows move relative to each other is one of the important sources of turbine unsteadiness. The present experiment aims to investigate the effect of the static pressure pulsations on the interaction of film coolant flows from two rows of staggered holes with mainstream and its effect on film cooling heat transfer. Potential flow pulsations are generated by the rotating shutter mechanism installed downstream of the test section, The free-stream Strouhal number based on the boundary layer thickness is in the range of 0.033 - 0.33, and the amplitude of about 10-20%. Measured are time-averaged and phase-averaged velocity variations, pressure variations and temperature distributions of the flow field. Experimental conditions are identified by boundary layer measurements. Injectant behavior is characterized by the measurements of unsteady pressure in the plenum chamber and free-stream static pressure. The film cooling effectiveness is evaluated from the insulated wall temperature measurement. It has been found that bulk flow pulsation provides very large diffusion of the injectants and the effectiveness is significantly reduced by the flow pulsations.

PIV Aanalysis of Vortical Flow behind a Rotating Propeller in a Cavitation Tunnel (캐비테이션 터널에서 PIV를 이용한 프로펠러 후류 보오텍스 유동계측 및 거동해석)

  • Paik, Bu-Geun;Kim, Jin;Park, Young-Ha;Kim, Ki-Sup;Kim, Kyoung-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.619-630
    • /
    • 2005
  • A two-frame PIV (Particle Image Velocimetry) technique is used to investigate the wake characteristics behind a marine propeller with 4 blades at high Reynolds number. For each of 9 different blade phases from $ 0^{\circ} $ to $ 80^{\circ} $, one hundred and fifty instantaneous velocity fields are measured. They are ensemble averaged to study the spatial evolution of the propeller wake in the region ranging from the trailing edge to one propeller diameter (D) downstream location. The phase-averaged mean velocity shows that the trailing vorticity is related to radial velocity jump, and the viscous wake is affected by boundary layers developed on the blade surfaces and centrifugal force. Both Galilean decomposition method and vortex identification method using swirling strength calculation are very useful for the study of vortex behaviors En the propeller wake legion. The slipstream contraction occurs in the near-wake region up to about X/D : 0.53 downstream. Thereafter, unstable oscillation occurs because of the reduction of interaction between the tip vortex and the wake sheet behind the maximum contraction point.

Finite element solutions of natural convection in porous media under the freezing process (동결과정을 포함한 다공층에서 자연대류에 대한 유한요소 해석)

  • Lee, Moon-Hee;Choi, Chong-Wook;Seo, Suk-Jin;Park, Chan-Guk
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.51-56
    • /
    • 2000
  • The Finite Element Solutions Is reported on solid-liquid phase change in porous media with natural convection including freezing. The model is based on volume averaged transport equations, while phase change is assumed to occur over a small temperature range. The FEM (Finite Element Method) algorithm used in this study is 3-step time-splitting method which requires much less execution time and computer storage the velocity-pressure integrated method and the penalty method. And the explicit Lax-Wendroff scheme is applied to nonlinear convective term in the energy equation. For natural convection including melting and solidification the numerical results show reasonable agreement with FDM (Finite Difference Method) results.

  • PDF

A Study on Characteristics of Unsteady Laminar Flows in Squaresectional $180^{\circ}$ Curved Duct (정사각단면 $180^{\circ}$ 곡관덕트의 입구영역에서 비정상층류유동의 유동특성에 관한 연구)

  • Park, G.M.;Mo, Y.W.;Cho, B.K.
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.515-524
    • /
    • 1996
  • The flow characteristics of developing unsteady laminar flow in a square-sectional $180^{\circ}$ curved duct are experimentally investigated by using laser doppler velocimerty (LDV) system with data acquisition and processing system of rotating machinery resolver(RMR) and PHASE software. The major flow characteristics of developing laminar pulsating flows are presented by mean velocity profilel velocity distribution of secondary flow, wall shear stress distributions, entrance lengths according to dimensionless angular frequency($\omega^+$), velocity amplitude ratio($A^1$), and time-averaged Dean number($De_ta$). The velocity profiles and wall shear stress distribution of laminar pulsating flow with dimensionlessangular frequency show the flow characteristics of the quasi-steady laminar flow in a curved duct. The developing region of laminar pulsatile flows in a square-sectional $180^{\circ}$ curved duct is extended to the curved duct angle of approximately $120^{\circ}$ under the present experimental condition.

  • PDF

Reynolds Number Effects on the Near-Wake of an Oscillating Naca 4412 Airfoil, Part 1 : Mean Velocity Field (진동하는 NACA 4412 에어포일 근접후류에서의 레이놀즈수 효과 1: 평균속도장)

  • Jang,Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.15-25
    • /
    • 2003
  • An experimental. study is carried out to investigate the near-wake characteristics of an airfoil oscillating in pitch. An NACA 4412 airfoil is sinusoidally pitched about the quarter chord point between the angle of attack -6$^{\circ}$ and +6$^{\circ}$. A hot-wire anemometer is used to measure the phase-averaged mean velocities in the near-wake region of an oscillating airfoil. The freestream velocities of present work are 3.4, 12.4, 26.2 m/s, and the corresponding Reynolds numbers are 5.3${\times}10^4$, 1.9${\times}10^5$, 4.l${\times}10^5$, and the reduced frequency is 0.1. Streamwise velocity profiles are presented to show the Reynolds number effects on the near-wake region behind an airfoil oscillating in pitch. All the cases in these measurements show that the velocity defects by the change of the Reynolds number are very large at the lowest Reynolds number $R_N$=5.3${\times}10^4$: and are small at the other Reynolds numbers ($R_N$=1.9${\times}10^5$ and 4.l${\times}10^5$) in the near-wake region. A significant difference of phase-averaged mean velocity between 5.3${\times}10^4$, and 1.9${\times}10^5$ is observed. The present study shows that a critical value of Reynolds number in the near-wake of an oscillating airfoil exists in the range between 5.3${\times}10^4$, and 1.9${\times}10^5$.

Development of a 9as-liquid two-phase flowmeter using double orifice plates (2중판 오리피스를 이용한 기액 2상유량계의 개발)

  • 이상천;이상무;남상철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.619-629
    • /
    • 1998
  • An experimental work was conducted to investigate a feasibility of simultaneous measurement of gas-liquid two-phase flowrates with double orifice plates using air and water. The tests were carried out under the atmospheric pressure and at the ambient temperature using two different tube sizes. Qualities of an air-water flow in the present study have values less than 0.1 and thus the mixed flow showed bubbly, plug, slug flow regimes. The probability density function (PDF) and the power spectral density function (PSDF) of the instantaneous pressure drop traces for the flow regimes were obtained. It is found that some distinctive features exist in the distribution of these functions, depending upon the two-phase flow pattern. The time-averaged value of the instantaneous pressure drop increases with increasing gas and liquid flowrates, showing a single-valued function for the total mass flowrate and the quality. It is also found that the two-phase discharge coefficient exhibits a consistent trend for variation of dimensionless parameters such as the superficial velocity ratio and the gas Reynolds number. The results indicate that simultaneous measurement of two-phase flowrate may be possible based upon a statistical analysis of the instantaneous pressure drop curves monitored using double orifice plates.

  • PDF

Performance Prediction and Flow Field Calculation for Airfoil Fan with Impeller Inlet Clearance

  • Kang, Shin-Hyoung;Cao, Renjing;Zhang, Yangjun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.226-235
    • /
    • 2000
  • The performance prediction of an airfoil fan using a commerical code, STAR/CD, is verified by comparing the calculated results with measured performance data and velocity fields of an airfoil fan. The effects of inlet tip clearance on performance are investigated. The calculations overestimate the pressure rise performance by about 10-25 percent. However, the performance reduction due to tip clearance is well predicted by numerical simulations. Main source of performance decrease is not only the slip factor but also impeller efficiency. The reduction in performance is 12-16 percent for 1 percent gap of the diameter. The calculated reductions in impeller efficiency and slip factor are also linearly proportional to the gap size. The span-wise distributions of phase averaged velocity and pressure at the impeller exit are strongly influenced by the radial gap size. The radial component of velocity and the flow angle increase over the passsage as the gap increases. The slip factor decreases and the loss increases with the gap size. The high velocity of leakage jet affects the impeller inlet and passage flows. With a larger clearance, the main stream moves to the impeller hub side and high loss region extends from the shroud to the hub.

  • PDF

Study on the Three Dimensional Flow Characteristics of the Propeller Wake Using PIV Techniques (PIV 기법을 이용한 프로펠러 후류의 3차원 유동 특성 연구)

  • Paik, Bu-Geun;Kim, Jin;Kim, Kyung-Youl;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.219-227
    • /
    • 2007
  • A stereo-PIV (particle image velocimetry) technique is used to investigate the vortical structure of the wake behind a rotating propeller in the present study. A four bladed propeller is tested in a cavitaion tunnel without any wake screen. Hundreds of instantaneous velocity fields are phase-averaged to reveal the three dimensional spatial evolution of the flow behind the propeller. The results of conventional 2-D PIV are also compared with those of the stereo-PIV to understand the vortical structure of propeller wake deeply. The variations of radial and axial velocities in the 2-D PIV results seem to be affected by the out-of-plane motion. generating a little perspective error in the in-plane velocity components of the slipstream. The strong out-of-plane motion around the hub vortex also causes the perspective error to vary the axial velocity component a little at the near wake region. The out-of-plane velocity component had the maximum value of about 0.3U0 in the tip vortices and continued its magnitude in the wake region.

Turbulent properties in a mixed statistically stationary flow

  • Baek, Tae-Sil;Doh, Deog-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.729-736
    • /
    • 2013
  • The turbulent properties in a mixed statistically stationary flow were investigated experimentally by a pseudo stereoscopic PIV. In order to validate the experimental results, the profiles of the turbulent kinetic energy were evaluated with the flow features. A mechanical agitator having 6 blades was installed at the bottom of the mixing tank (D=60cm, H=60cm). The agitator was rotated with 80rpm clockwise and counter-clockwise. For the measurements, three cameras were used and all were synchronized. The images captured by one of the three cameras was used for the measurement of rotational speed, and the images captured by the other two cameras were used to measure three dimensional components of velocity vectors. All vectors captured at the same rotational angle were phase averaged to construct three-dimensional vector fields to reconstruct the spatial distribution of the flow properties. It was seen that the jet scrolling along the tank was the main source of mixing.

The Effect of Free Stream Turbulence on the Coherent Structures in the near Wake of a Circular Cylinder (원주 후류의 응집구조에 대한 자유흐름 난류강도의 영향)

  • 정양범;양종필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.60-72
    • /
    • 1994
  • The effect of free stream tubulence on the coherent structure in the near wake of a circular cylinder was investigated by a conditional sampling technique. The measurements were made from C.T.A. with hot wire I-probe and a Split-film sensor. Contours of phase-averaged velocity and vorticities were presented and discussed. It was found that the value of the vortex strength increased with increasing free stream turbulence which can enhance the roll-up of the shear layer.

  • PDF